Smart adhesives with switchable adhesion have attracted considerable attention for their potential applications in sensors, soft grippers, and robots. In particular, surfaces with controlled adhesion to both solids and liquids have received more attention, because of their wider range of applications. However, surfaces that exhibit controllable adhesion to both solids and liquids often cannot provide sufficient adhesion strength for strong solid adhesion. To overcome this limitation, this study developed a triple-bioinspired shape memory smart adhesive, drawing inspiration from the adhesion structures found in octopus suckers, lotus leaves, and creepers. Our adhesive design incorporates microcavities formed by a shape memory polymer (SMP), which can transition between rubbery and glassy states in response to temperature changes. By leveraging the shape memory effect and the rubber-glass (R-G) phase transition of the SMP, the adhesion of the surface to smooth solids, rough solids, and water droplets could be switched by adjusting the temperature and applied force. Notably, the adhesives designed herein exhibited high adhesion strength (up to 420 kPa) on solids, facilitated by the shape interlocking effect and the negative pressure generated within the microcavities. Furthermore, the programmable transport of solids and liquids can be achieved by utilizing this switchable adhesion. This approach expands the possibilities for designing smart adhesives and holds potential for various applications in different fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.3c06651 | DOI Listing |
Heliyon
January 2025
Department of Journalism, Faculty of Communication, Suleyman Demirel University, Isparta, Turkiye.
The rise of solo travel has become a significant trend in the leisure sphere; nonetheless, there is limited understanding of how solo travelers utilize social media throughout their travel process. This lack of insight represents a research problem, as it hinders the ability to enhance solo travel experiences through social media engagement. Addressing this gap, this study investigates the specific ways in which solo leisure travelers experience and engage with social media during their journeys.
View Article and Find Full Text PDFMath Biosci Eng
December 2024
Department of Electronics and Communication Engineering, Akshaya College of Engineering and Technology, Coimbatore, Tamil Nadu, India.
The hippocampus is a small, yet intricate seahorse-shaped tiny structure located deep within the brain's medial temporal lobe. It is a crucial component of the limbic system, which is responsible for regulating emotions, memory, and spatial navigation. This research focuses on automatic hippocampus segmentation from Magnetic Resonance (MR) images of a human head with high accuracy and fewer false positive and false negative rates.
View Article and Find Full Text PDFDev Rev
March 2025
Child Study Center, Yale School of Medicine, 230 S Frontage Rd, New Haven, CT 06519, USA.
Parent-child interactions shape children's cognitive outcomes such that caregivers can guide attention and facilitate learning opportunities. These interactions provide infants and toddlers with rich, naturalistic experiences that engage complex cognitive functions and lay the groundwork for the development of mature executive functions. Although most caregivers seek to engage children optimally, they can unintentionally impede this developmental process by being under-engaged or intrusive.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.
Aim: Octopamine in the Drosophila brain has a neuromodulatory role similar to that of noradrenaline in mammals. After release from Tdc2 neurons, octopamine/tyramine may trigger intracellular Ca signaling via adrenoceptor-like receptors on neural cells, modulating neurotransmission. Octopamine/tyramine receptors are expressed in neurons and glia, but how each of these cell types responds to octopamine remains elusive.
View Article and Find Full Text PDFACS Macro Lett
January 2025
The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Banacha 12/16, Lodz 90-237, Poland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!