The combination of continuous fiber-reinforced thermoplastic composites (CFRTPCs) and the continuous fiber 3D printing (CF3DP) technique enables the rapid production of complex structural composites. In these 3D-printed composites, stress transfer primarily relies on the fiber-resin interface, making it a critical performance factor. The interfacial properties are significantly influenced by the temperatures applied during the loading and forming processes. While the effect of the loading temperature has been extensively researched, that of the forming temperature remains largely unexplored, especially from an atomistic perspective. Our research aims to employ molecular dynamics simulations to elucidate the effect of temperature on the interfacial properties of continuous carbon fiber-reinforced polyamide 6 (C/PA6) composites fabricated using the CF3DP technique, considering both loading and forming aspects. Through molecular dynamics simulations, we uncovered a positive correlation between the interfacial strength and forming temperature. Moreover, an increased forming temperature induced a notable shift in the failure mode of C/PA6 under uniaxial tensile loading. Furthermore, it was observed that increasing loading temperatures led to the deterioration of the mechanical properties of PA6, resulting in a gradual transition of the primary failure mode from adhesive failure to cohesive failure. This shift in the failure mode is closely associated with the glass transition of PA6.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c12372 | DOI Listing |
Nat Commun
January 2025
State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.
Polymer dielectric materials are widely used in electrical and electronic systems, and there have been increasing demands on their dielectric properties at high temperatures. Incorporating inorganic nanoparticles into polymers is an effective approach to improving their dielectric properties. However, the agglomeration of inorganic nanoparticles and the destabilization of the organic-inorganic interface at high temperatures have limited the development of nanocomposites toward large-scale industrial production.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China.
Hydroxyl radical (·OH) plays a crucial role in atmospheric chemistry, regulating the oxidative potential and aerosol composition. This study reveals an unprecedented source of ·OH in the atmosphere: mineral dust-bearing microdroplet aerosols. We demonstrate that Kaolin clay particles in microdroplet aerosols trigger rapid ·OH production upon solar irradiation, with rates reaching an order of at least 10 M s.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Northeast Normal University, Faculty of Chemistry, Remin Street 5268, 130024, Changchun, CHINA.
Ultrahigh-voltage potassium-ion batteries (PIBs) with cost competitiveness represent a viable route towards high energy battery systems. Nevertheless, rapid capacity decay with poor Coulombic efficiencies remains intractable, mainly attributed to interfacial instability from aggressive potassium metal anodes and cathodes. Additionally, high reactivity of K metal and flammable electrolytes pose severe safety hazards.
View Article and Find Full Text PDFAdv Mater
January 2025
Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
Ionic conductive hydrogels have emerged as an excellent option for constructing dielectric layers of interfacial iontronic sensors. Among these, gradient ionic hydrogels, due to the intrinsic gradient elastic modulus, can achieve a wide range of pressure responses. However, the fabrication of gradient hydrogels with optimal mechanical and sensing properties remains a challenge.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
Mixed matrix membranes (MMMs) composed of metal-organic frameworks (MOFs) and polymer matrixes have garnered significant attention due to their potential to overcome the permeability-selectivity trade-off inherent in polymeric membranes. Nevertheless, the application and industrial production of MOF-based MMMs have been hindered by issues such as poor interfacial compatibility and cumbersome fabrication processes. Recently, strategies have emerged as promising approaches for fabricating MOF-based MMMs, offering enhanced interfacial compatibility between MOF fillers and polymers, as well as a simplified construction process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!