CRISPR-Cas attack of HIV-1 proviral DNA can cause unintended deletion of surrounding cellular DNA.

J Virol

Amsterdam UMC, location University of Amsterdam, Laboratory of Experimental Virology, Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands.

Published: December 2023

Although HIV replication can be effectively inhibited by antiretroviral therapy, this does not result in a cure as the available drugs do not inactivate the integrated HIV-1 DNA in infected cells. Consequently, HIV-infected individuals need lifelong therapy to prevent viral rebound. Several preclinical studies indicate that CRISPR-Cas gene-editing systems can be used to achieve permanent inactivation of the viral DNA. It was previously shown that this inactivation was due to small inactivating mutations at the targeted sites in the HIV genome and to excision or inversion of the viral DNA fragment between two target sites. We, here, demonstrate that CRISPR-Cas treatment also causes large unintended deletions, which can include surrounding chromosomal sequences. As the loss of chromosomal sequences may cause oncogenic transformation of the cell, such unintended large deletions form a potential safety risk in clinical application of this antiviral application and possibly all CRISPR-Cas gene-editing approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10734527PMC
http://dx.doi.org/10.1128/jvi.01334-23DOI Listing

Publication Analysis

Top Keywords

crispr-cas gene-editing
8
viral dna
8
chromosomal sequences
8
dna
5
crispr-cas
4
crispr-cas attack
4
attack hiv-1
4
hiv-1 proviral
4
proviral dna
4
dna unintended
4

Similar Publications

Cascade-Responsive Nanoparticles for Efficient CRISPR/Cas9-Based Glioblastoma Gene Therapy.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.

CRISPR/Cas9 (CRISPR, clustered regularly interspaced short palindromic repeats) gene editing technology represents great promise for treating glioblastoma (GBM) due to its potential to permanently eliminate tumor pathogenic genes. Unfortunately, delivering CRISPR to the GBM in a safe and effective manner is challenging. Herein, a glycosylated and cascade-responsive nanoparticle (GCNP) that can effectively cross the blood-brain barrier (BBB) and activate CRISPR/Cas9-based gene editing only in the GBM is designed.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is a complex autoimmune disorder characterized by widespread inflammation and autoantibody production. Its development and progression involve genetic, epigenetic, and environmental factors. Although genome-wide association studies (GWAS) have repeatedly identified a susceptibility signal at 16p13, its fine-scale source and its functional and mechanistic role in SLE remain unclear.

View Article and Find Full Text PDF

Prime editing (PE) is a CRISPR-based tool for genome engineering that can be applied to generate human induced pluripotent stem cell (hiPSC)-based disease models. PE technology safely introduces point mutations, small insertions, and deletions (indels) into the genome. It uses a Cas9-nickase (nCas9) fused to a reverse transcriptase (RT) as an editor and a PE guide RNA (pegRNA), which introduces the desired edit with great precision without creating double-strand breaks (DSBs).

View Article and Find Full Text PDF

Genetically modified (GM) herbicide-tolerant soybean 'Zhonghuang 6106', which introduces a glyphosate-resistant gene, ensures soybean yield while allowing farmers to reduce the use of other herbicides, thereby reducing weed management costs. To protect consumer rights and facilitate government supervision, we have established a simple and rapid on-site nucleic acid detection method for GM soybean 'Zhonghuang 6106'. This method leverages the isothermal amplification characteristics of RPA technology and the high specificity of CRISPR-Cas12a to achieve high sensitivity and accuracy in detecting GM soybean components.

View Article and Find Full Text PDF

Clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system is a new gene editing tool that represents a revolution in gene therapy. This study aimed to review the clinical trials conducted to evaluate the efficacy and safety of the CRISPR/Cas9 system in treating thalassemia and sickle cell disease (SCD). We searched relevant literature using "CRISPR Cas", "thalassemia", "sickle cell" and "clinical trial" as subject terms in PubMed, Cochrane, Web of Science, and Google Scholar up to December 3rd, 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!