In order to further clarify the effect of sulfur doping on the laser damage threshold of potassium dihydrogen phosphate (KDP), the properties of sulfur substituting for phosphorus doping defects (S) in KDP crystals with paraelectric (PE) and ferroelectric (PE) phases are studied in this article. More accurate defect transition levels were obtained by band edge correction, and the band edge corrected values were 1.28 eV and 1.88 eV for the PE and FE phases, respectively. The defect formation energies with four different defect charges (0, +1, +2, and-1) were obtained using the finite size correction scheme. The stable defect charge states were (+2 charge state) (+1 charge state) and (-1 charge state) in turn when the Fermi level moved from the valence band maximum (VBM) to the conduction band minimum (CBM). Moreover, by considering the electron-phonon coupling, the optical absorption and emission spectra were obtained. The absorption peak for the state of the PE phase at 4.63 eV was close to the experimental value. We predicted that the absorption peak at 4.50 eV belongs to the state with the FE phase. The emission peaks at 0.10 eV and 1.36 eV were related to the PE and FE phases, accordingly. The absorption may affect the application of S-KDP crystals and reduce the laser damage threshold.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp04600aDOI Listing

Publication Analysis

Top Keywords

charge state
12
kdp crystals
8
doping defects
8
laser damage
8
damage threshold
8
band edge
8
state charge
8
absorption peak
8
state phase
8
state
5

Similar Publications

High Mobility Emissive Organic Semiconductors for Optoelectronic Devices.

J Am Chem Soc

January 2025

Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.

High mobility emissive organic semiconductors (HMEOSCs) are a kind of unique semiconducting material that simultaneously integrates high charge carrier mobility and strong emission features, which are not only crucial for overcoming the performance bottlenecks of current organic optoelectronic devices but also important for constructing high-density integrated devices/circuits for potential smart display technologies and electrically pumped organic lasers. However, the development of HMEOSCs is facing great challenges due to the mutually exclusive requirements of molecular structures and packing modes between high charge carrier mobility and strong solid-state emission. Encouragingly, considerable advances on HMEOSCs have been made with continuous efforts, and the successful integration of these two properties within individual organic semiconductors currently presents a promising research direction in organic electronics.

View Article and Find Full Text PDF

Mechanistic Understanding of the pH-Dependent Oxygen Reduction Reaction on the Fe-N-C Surface: Linking Surface Charge to Adsorbed Oxygen-Containing Species.

ACS Appl Mater Interfaces

January 2025

Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.

The Fe-N-C catalyst, featuring a single-atom Fe-N configuration, is regarded as one of the most promising catalytic materials for the oxygen reduction reaction (ORR). However, the significant activity difference under acidic and alkaline conditions of Fe-N-C remains a long-standing puzzle. In this work, using extensive ab initio molecular dynamics (AIMD) simulations, we revealed that pH conditions influence ORR activity by tuning the surface charge density of the Fe-N-C surface, rather than through the direct involvement of HO or OH ions.

View Article and Find Full Text PDF

Tumor-derived extracellular vesicle (tEV)-associated RNAs hold promise as diagnostic biomarkers, but their clinical use is hindered by the rarity of tEVs among nontumor EVs. Here, we present EV-CLIP, a highly sensitive droplet-based digital method for profiling EV RNA. EV-CLIP utilizes the fusion of EVs with charged liposomes (CLIPs) in a microfluidic chip.

View Article and Find Full Text PDF

Skin Hydration by Natural Moisturizing Factors, a Story of H-Bond Networking.

J Phys Chem B

January 2025

INSERM U1248 Pharmacology & Transplantation, Univ. Limoges, CBRS, 2 Rue du Prof. Descottes, F-87000 Limoges, France.

Dry skin is a common condition that is experienced by many. Besides being particularly present during the cold season, various diseases exist all year round, leading to localized xerosis. To prevent it, the skin is provided with natural moisturizing factors (NMFs).

View Article and Find Full Text PDF

Two-dimensional layered double hydroxides (LDHs) are ideal candidates for a large number of (bio)catalytic applications due to their flexible composition and easy to tailor properties. Functionality can be achieved by intercalation of amino acids (as the basic units of peptides and proteins). To gain insight on the functionality, we apply resonant inelastic soft x-ray scattering and near edge x-ray absorption fine structure spectroscopy to CaFe LDH in its pristine form as well as intercalated with the amino acids proline and cysteine to probe the electronic structure and its changes upon intercalation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!