Mesenchyme governs hair follicle induction.

Development

Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, 00014 Helsinki, Finland.

Published: November 2023

Tissue interactions are essential for guiding organ development and regeneration. Hair follicle formation relies on inductive signalling between two tissues, the embryonic surface epithelium and the adjacent mesenchyme. Although previous research has highlighted the hair-inducing potential of the mesenchymal component of the hair follicle - the dermal papilla and its precursor, the dermal condensate - the source and nature of the primary inductive signal before dermal condensate formation have remained elusive. Here, we performed epithelial-mesenchymal tissue recombination experiments using hair-forming back skin and glabrous plantar skin from mouse embryos to unveil that the back skin mesenchyme is inductive even before dermal condensate formation. Moreover, the naïve, unpatterned mesenchyme was sufficient to trigger hair follicle formation even in the oral epithelium. Building on previous knowledge, we explored the hair-inductive ability of the Wnt agonist R-spondin 1 and a Bmp receptor inhibitor in embryonic skin explants. Although R-spondin 1 instigated precocious placode-specific transcriptional responses, it was insufficient for hair follicle induction, either alone or in combination with Bmp receptor inhibition. Our findings pave the way for identifying the hair follicle-inducing cue.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.202140DOI Listing

Publication Analysis

Top Keywords

hair follicle
20
dermal condensate
12
follicle induction
8
follicle formation
8
condensate formation
8
bmp receptor
8
hair
6
follicle
5
mesenchyme
4
mesenchyme governs
4

Similar Publications

Relationship between fiber quality and follicle density in Ch'aku llamas (Lama glama).

Trop Anim Health Prod

December 2024

Faculty of Veterinary Medicine and Animal Science, Universidad Nacional Micaela Bastidas de Apurímac, Abancay, Perú.

In the high altitudes of the Andes, llama breeders shear the fiber from their animals, obtaining fleeces for many purposes. Dehairing the fleece of these animals is a viable alternative to improving the quality and value of the fleece. The study examined the attributes of fiber quality and pilose follicle of dehaired and non-dehaired fleece from Ch'aku llamas and the relationship among these characteristics.

View Article and Find Full Text PDF

Wool quality is a crucial economic trait in Angora rabbits, closely linked to hair follicle (HF) growth and development. Therefore, understanding the molecular mechanisms of key genes regulating HF growth and wool fiber formation is essential. In the study, fine- and coarse-wool groups were identified based on HF morphological characteristics of Zhexi Angora rabbits.

View Article and Find Full Text PDF

PRAME Staining of Adnexal Lesions and Common Skin Cancer Types: Biomarker with Potential Diagnostic Utility.

Dermatopathology (Basel)

December 2024

Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA.

PRAME (PReferentially expressed Antigen in MElanoma) is a tumor-associated antigen first identified in tumor-reactive T-cell clones derived from a patient with metastatic melanoma. Immunohistochemistry (IHC) for PRAME is useful for diagnostic purposes to support a suspected diagnosis of melanoma. Anecdotally, PRAME has been observed to stain sebaceous units in glands in background skin.

View Article and Find Full Text PDF

Dorper sheep is popular among farming enterprises with strong adaptability, disease resistance, and roughage tolerance, and an unique characteristic of natural shedding of wool. In a large number of observations on experimental sheep farms, it was found that the wool of some sheep still had not shed after May, thus manual shearing was required. Therefore, understanding the molecular mechanisms of normal hair follicles (HFs) development is crucial to revealing the improvement of sheep wool-related traits and mammalian skin-related traits.

View Article and Find Full Text PDF

Cashmere grows from the secondary hair follicles (SHFs) that synchronously regenerate and degenerate in a circannual rhythm. Most studies examining factors related to cashmere growth have been performed on goat skin. However, the molecular properties and regulators preferentially expressed in SHFs are less clear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!