Molecular Hessian matrices from a machine learning random forest regression algorithm.

J Chem Phys

Faculty of Physics, University of Vienna, Kolingasse 14-16, 1090 Vienna, Austria.

Published: November 2023

In this article, we present a machine learning model to obtain fast and accurate estimates of the molecular Hessian matrix. In this model, based on a random forest, the second derivatives of the energy with respect to redundant internal coordinates are learned individually. The internal coordinates together with their specific representation guarantee rotational and translational invariance. The model is trained on a subset of the QM7 dataset but is shown to be applicable to larger molecules picked from the QM9 dataset. From the predicted Hessian, it is also possible to obtain reasonable estimates of the vibrational frequencies, normal modes, and zero point energies of the molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0169384DOI Listing

Publication Analysis

Top Keywords

molecular hessian
8
machine learning
8
random forest
8
internal coordinates
8
hessian matrices
4
matrices machine
4
learning random
4
forest regression
4
regression algorithm
4
algorithm article
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!