A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predation risk drives long-term shifts in migratory behaviour and demography in a large herbivore population. | LitMetric

Migration is an adaptive life-history strategy across taxa that helps individuals maximise fitness by obtaining forage and avoiding predation risk. The mechanisms driving migratory changes are poorly understood, and links between migratory behaviour, space use, and demographic consequences are rare. Here, we use a nearly 20-year record of individual-based monitoring of a large herbivore, elk (Cervus canadensis) to test hypotheses for changing patterns of migration in and adjacent to a large protected area in Banff National Park (BNP), Canada. We test whether bottom-up (forage quality) or top-down (predation risk) factors explained trends in (i) the proportion of individuals using 5 different migratory tactics, (ii) differences in survival rates of migratory tactics during migration and whilst on summer ranges, (iii) cause-specific mortality by wolves and grizzly bears, and (iv) population abundance. We found dramatic shifts in migration consistent with behavioural plasticity in individual choice of annual migratory routes. Shifts were inconsistent with exposure to the bottom-up benefits of migration. Instead, exposure to landscape gradients in predation risk caused by exploitation outside the protected area drove migratory shifts. Carnivore exploitation outside the protected area led to higher survival rates for female elk remaining resident or migrating outside the protected area. Cause-specific mortality aligned with exposure to predation risk along migratory routes and summer ranges. Wolf predation risk was higher on migratory routes than summer ranges of montane-migrant tactics, but wolf predation risk traded-off with heightened risk from grizzly bears on summer ranges. A novel eastern migrant tactic emerged following a large forest fire that enhanced forage in an area with lower predation risk outside of the protected area. The changes in migratory behaviour translated to population abundance, where abundance of the montane-migratory tactics declined over time. The presence of diverse migratory life histories maintained a higher total population abundance than would have been the case with only one migratory tactic in the population. Our study demonstrates the complex ways in which migratory populations change over time through behavioural plasticity and associated demographic consequences because of individuals balancing predation risk and forage trade-offs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1365-2656.14022DOI Listing

Publication Analysis

Top Keywords

predation risk
36
protected area
20
summer ranges
16
migratory
13
migratory behaviour
12
population abundance
12
migratory routes
12
predation
9
risk
9
large herbivore
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!