In this study, we report a fluoride chemosensor based on the use of a non-fluorescent pre-coumarin, compound 1. This compound undergoes selective fluoride-triggered formation of coumarin 2, with a concomitant turn-on fluorescence signal. Although compound 1 exists as a mixture of alkene isomers (2 : 1 in favor of the isomer), only the minor -isomer undergoes cyclization. Nonetheless, comprehensive computational and experimental studies provide evidence that isomerization of -1 to -1, followed by fluoride-triggered phenolate evolution and intramolecular cyclization, facilitates the generation of coumarin 2 in high yield. Moreover, this system is an effective turn-on fluorescence sensor for fluoride anions, which displays outstanding selectivity (limited response to other commonly occurring analytes), sensitivity (lowest reported limits of detection for this sensor class), and practicality (works in solution and on paper to generate both fluorometric and colorimetric responses). Ongoing efforts are focused on expanding this paradigm to other pre-coumarin scaffolds, which also undergo analyte-specific coumarin formation accompanied by turn-on fluorescence.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3ob01563gDOI Listing

Publication Analysis

Top Keywords

turn-on fluorescence
12
shining light
4
light fluoride
4
fluoride detection
4
detection comprehensive
4
comprehensive study
4
study exploring
4
exploring potential
4
coumarin
4
potential coumarin
4

Similar Publications

We report a bithiophene-based fluorescence probe BDT (2,2'-(((1 E, 1'E)-[2,2'-bithiophene]-5,5'-diylbis(methaneylylidene))bis(azaneylylidene))bis(4-(tert-butyl)phenol)) for recognizing ClO. BDT selectively responded to ClO, leading to a blue fluorescence enhancement in a mixture of DMF/HEPES buffer (9:1, v/v). Importantly, BDT showed an ultrafast response (within 1 s) to ClO among the fluorescent turn-on chemosensors based on bithiophene.

View Article and Find Full Text PDF

A fluorescence "turn-off-on" nanoprobe is designed by using europium-doped strontium molybdate perovskite quantum dots (Eu:SMO PQDs) for the sequential detection of hypoxanthine (Hx) and Fe. The Eu:SMO PQDs were prepared by the sol-gel method using Sr(NO), (NH)MoO.4HO, and Eu(OCOCH) as precursors.

View Article and Find Full Text PDF

Engineering Acid-Promoted Two-Photon Ratiometric Nanoprobes for Evaluating HClO in Lysosomes and Inflammatory Bowel Disease.

ACS Appl Mater Interfaces

January 2025

Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.

HClO is considered a potential contributing factor and biomarker of inflammatory bowel disease (IBD). Accurate monitoring of lysosomal HClO is important for further developing specific diagnostic and therapeutic schedules for IBD. However, only rare types of fluorescent probes have been reported for detecting HClO in IBD so far.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) play crucial roles in both cell signaling and defense mechanisms. Hypochlorous acid (HOCl), a strong oxidant, aids the immune response by damaging pathogens. In this study, we developed two pyridinium-based fluorophores PSSM and PSSE for selective hypochlorite detection.

View Article and Find Full Text PDF

Highly Selective AIEgen-Based "Turn On" Fluorescent Imaging for Inflammation Detection.

Luminescence

January 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China.

Hypochlorous acid (HClO) is released by immune cells in the immune system, and it helps the body fight off infections and inflammation by killing bacteria, viruses, and other pathogens. However, tissue damage or apoptosis may also be induced by excess HClO. On this basis, we designed the probe TPE-NS by choosing tetraphenylethylene (TPE) as the luminescent unit and dimethylthiocarbamoyl chloride as the recognition site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!