Due to notable thermochemical stability, polyphosphamides are often regarded as flame retardants, while molecular phosphamides can serve as versatile Lewis base to catalyze diverse organic transformations. Being chemically analogous to phosphine oxide, phosphamide can also be considered as a mediator for the phosphine-mediated reaction. Herein, an amorphous polymeric material consisting of phosphamide (-NH-P(O)) in the repeating unit () has been prepared via condensation of tris(2-aminoethyl)amine (TREN) and phenyl phosphinic dichloride (PPDC). The is isolated as a metal-free and pure organic material which is made of a strong covalent bond and the phosphamide unit is deployed in the organic framework. The presence of phosphamide in the repeating unit of the isolated amorphous material can be confirmed by P CPMAS NMR, FTIR, and Raman studies. The core-level N 2p and P 2p X-ray photoelectron spectra are in accordance with the presence of tertiary amine nitrogen attached to carbon and secondary amine nitrogen attached to phosphorus. Elemental analyses have depicted approximately 19.7% of phosphorus content in the material, which is being utilized to study the catalytic Appel reaction with 76% conversion of alcohol to a corresponding halide and TON of 462. Quasi in situ Raman study has identified that amino phosphine formed via in situ reduction of the phosphamide unit of the catalyzes the halogenation of primary and secondary alcohols with wide substrate scope and functional group tolerance. Kinetic studies have established a first-order dependence with respect to alcohol, while deuterium labeling experiments emphasize that the deprotonation of alcohol is the rate-limiting step. High thermal stability of the material, scope of easy catalyst recyclability, and a cumulative TON of 1386 have led the as an emerging pure organic material to be explored further for other phosphine-mediated organocatalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.3c02989 | DOI Listing |
Environ Sci Ecotechnol
January 2025
Systems Biotechnology Group, Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany.
Biophotovoltaics (BPV) represents an innovative biohybrid technology that couples electrochemistry with oxygenic photosynthetic microbes to harness solar energy and convert it into electricity. Central to BPV systems is the ability of microbes to perform extracellular electron transfer (EET), utilizing an anode as an external electron sink. This process simultaneously serves as an electron sink and enhances the efficiency of water photolysis compared to conventional electrochemical water splitting.
View Article and Find Full Text PDFJ Allergy Clin Immunol Pract
January 2025
Institute of Allergy, Immunology and Pediatric Pulmonology, Yitzhak Shamir Medical Center; Department of Pediatrics, Faculty of Medicine, Tel Aviv University.
Background: Data on oral immunotherapy (OIT) for hazelnut allergy is limited and its potential to cross-desensitize for other nuts is unknown.
Objective: To study the efficacy and safety of hazelnut OIT in desensitizing hazelnut and additional tree nuts.
Methods: A prospective observational study of 30 hazelnut allergic patients aged ≥4 years who underwent hazelnut OIT.
Molecules
December 2024
Department of Chemistry, University of Massachusetts Boston, Boston, MA 02125, USA.
The rapidly growing glycoscience has boosted the research on the synthesis of glycans and their conjugates, which are centered on the stereoselective formation of glycosidic bonds. Compared to the mainstream acid-promoted glycosylation method that undergoes the S1 type mechanism, the basic/neutral conditions give better stereo control via the S2 mechanism. Anomeric hydroxyl group transformation, whether to form glycosidic bonds directly or to install a leaving group for later glycosylation, is key to carbohydrate synthesis, and the strategies in the stereo control of these reactions under basic/neutral conditions are summarized in this review.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
Harsh acid oxidation of activated charcoal transforms an insoluble carbon-rich source into water-soluble, disc structures of graphene decorated with multiple oxygen-containing functionalities. We term these pleiotropic nano-enzymes as "pleozymes". A broad redox potential spans many crucial redox reactions including the oxidation of hydrogen sulfide (HS) to polysulfides and thiosulfate, dismutation of the superoxide radical (O*), and oxidation of NADH to NAD.
View Article and Find Full Text PDFActa Biomater
December 2024
Aix-Marseille Univ, CNRS, Centrale Med, Institut Fresnel, 13013 Marseille, France. Electronic address:
Physical exercise has been shown to induce positive reactions in bone healing but next to nothing is known about how it affects the nanostructure, in particular around implants. In this study, we established this link by using small-angle X-ray scattering tensor tomography (SASTT) to investigate nanostructural parameters in 3D such as mineral particle orientation and thickness. As a model system, rat femoral bone with a bio-resorbable implant (ultra-high purity magnesium) was used.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!