A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exposure to single-walled carbon nanotubes differentially affect in vitro germination, biochemical and antioxidant properties of Thymus daenensis celak. seedlings. | LitMetric

Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) offer a new possibility for phyto-nanotechnology and biotechnology to improve the quality and quantity of secondary metabolites in vitro. The current study aimed to determine the SWCNTs effects on Thyme (Thymus daenensis celak.) seed germination. The seedlings were further assessed in terms of morphological and phytochemical properties. Sterile seeds were cultured in vitro and treated with various concentrations of SWCNTs. Biochemical analyses were designed on seedling sample extracts for measuring antioxidant activities (AA), total flavonoids (TFC) and phenolic contents, and the main enzymes involved in oxidative reactions under experimental treatments. The results indicated that an increase in SWCNTs concentration can enhance the total percentage of seed germination. The improvement was observed in samples that received SWCNTs levels of up to 125 µg ml, even though seedling height and biomass accumulation decreased. Seedling growth parameters in the control samples were higher than those of grown in SWCNT-fortified media. This may have happened because of more oxidative damage as well as a rise in POD and PPO activities in tissues. Additionally, secondary metabolites and relevant enzyme activities showed that maximum amounts of TPC, TFC, AA and the highest PAL enzyme activity were detected in samples exposed to 62.5 µg ml SWCNTs. Our findings reveal that SWCNTs in a concentration-dependent manner has different effects on T. daenensis morphological and phytochemical properties. Microscopic images analysis revealed that SWCNTs pierce cell walls, enter the plant cells and agglomerate in the cellular cytoplasm and cell walls. The findings provide insights into the regulatory mechanisms of SWCNTs on T. daenensis growth, germination and secondary metabolites production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658928PMC
http://dx.doi.org/10.1186/s12870-023-04599-9DOI Listing

Publication Analysis

Top Keywords

secondary metabolites
12
swcnts
9
single-walled carbon
8
carbon nanotubes
8
thymus daenensis
8
daenensis celak
8
seed germination
8
morphological phytochemical
8
phytochemical properties
8
cell walls
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!