In the search for improved and safer gadolinium-based magnetic resonance imaging (MRI) contrast agents, macrocyclic cyclodextrins (CDs) attract great interest. Our group previously synthesized a cyclodextrin-based ligand with 1,2,3-triazolmethyl residues conjugated to β-CD, called β-CD(A), which efficiently chelates Gd(III) ions. To probe the local structure around the Gd(III) ion in the 1:1 Gd(III): β-CD(A) complex in aqueous solution (pH 5.5), we used extended X-ray absorption fine structure (EXAFS) spectroscopy. Least-squares curve fitting of the Gd L-edge EXAFS spectrum revealed 5 Gd-O (4 COO and 1 HO) and 4 Gd-N (from two imino and two 1,2,3-triazole groups) bonds around the Gd(III) ion with average distances 2.36 and 2.56 ± 0.02 Å, respectively. A similar EXAFS spectrum was obtained from an aqueous solution of the clinically used MRI contrast agent Na[Gd(DOTA)(HO)], also 9-coordinated in its first shell. Careful analysis revealed that the mean Gd-N distance is shorter in the Gd(III): β-CD(A) (1:1) complex, indicating stronger Gd-N bonding and stronger Gd(III) complex formation than with the DOTA ligand. This is consistent with the lower free Gd concentration found previously for the Gd(III): β-CD(A) (1:1) complex than for the [Gd(DOTA)(HO)] complex, and shows its potential as an MRI probe. EXAFS spectroscopy revealed a similar Gd(III) 9-coordination although slightly stronger for a modified β-cyclodextrin: Gd(III) 1:1 complex, [Gd(LH)], in aqueous solution than for the clinically used MRI contrast agent Na[Gd(DOTA)(HO)].
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00775-023-02027-9 | DOI Listing |
Objective: To investigate the value of routine T2-weighted magnetic resonance imaging (MRI) and contrast-enhanced magnetic resonance angiography (CE-MRA) sequences in locating the fistula level of spinal arteriovenous fistula (SAVF).
Methods: Retrospectively analyzed the radiological findings of patients with SAVF diagnosed by surgery from May 2018 to September 2024. All patients completed spinal CE-MRA and routine T2-weighted MRI.
Alzheimers Dement
December 2024
Bernard and Irene Schwartz Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, USA.
Background: Amyloid related imaging abnormalities (ARIA), a group of neuropathological features seen in anti-amyloid immunotherapy patients, arises partly from CAA (Aβ buildup in blood vessels). Squirrel monkeys (SQMs), developing prominent age-related CAA exceeding brain Aβ, offer a unique NHP model for ARIA study. Evaluating edema-related neurobiological defects (ARIA-E) involves preferential use of T-weighted (T-w) and flow-attenuated inversion recovery (FLAIR) MRI while T*-weighted (T*-w) MRI is better suited for investigating iron-related pathology like microbleeds, hemorrhaging, and iron-homing in plaques.
View Article and Find Full Text PDFBackground: Prostatic malignancy with paraneoplastic subacute encephalitis -A rare syndrome METHOD: We present a case of 76 year old male without any previous comorbidity and addiction who manifested a rapid neuropsychiatric decline with a frontotemporal syndrome over a period of 6 months. He was anemic and cerebrospinal fluid study showed 10 cells with lymphocytic predominance. The extensive workup of csf for infection, malignancy revealed nothing.
View Article and Find Full Text PDFBackground: Clinical diagnosis of frontotemporal dementia (FTD) can be challenging, requiring an accurate tool dedicated to this diagnostic hurdle. Since FTD exhibits distinct regional atrophy patterns on magnetic resonance imaging (MRI), AI-aided automated brain volume analysis could enhance the clinical diagnostic assessment of FTD, including the detection of the disease and the classification of subtypes, which encompass behavioral variant (BV), semantic variant (SV), and progressive non-fluent aphasia (PNFA). In this study, we leverage automated brain volumetry software to approach both FTD detection and the differential diagnosis among its subtypes.
View Article and Find Full Text PDFBackground: Post-COVID cognitive dysfunctions, impacting attention, memory, and learning, might be linked to inflammation-induced blood-brain barrier (BBB) impairment. This study explores post-COVID BBB permeability changes using a non-contrast water-exchange based MRI and their associations with blood Alzheimer's biomarkers.
Method: Sixty-seven participants were classified based on COVID (COV) and cognitive (COG) statuses into three groups: COV+/COG- (n=34), COV+/COG+ (n=23), and COV- (n=10) for comparisons (COV+: Laboratory-verified SARS-CoV-2 infection; COV-: No history of SARS-CoV-2 infection and negative SARS-CoV-2 nucleocapsid antibody test.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!