Integrated multi-omic analysis reveals the cytokinin and sucrose metabolism-mediated regulation of flavone glycoside biosynthesis by MeJA exposure in Ficus pandurata Hance.

Food Res Int

College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; Chemical Biology Center, Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou 311300, China. Electronic address:

Published: December 2023

Ficus pandurata Hance (FPH) holds a rich history as a traditional Chinese botanical remedy, utilized both as a culinary condiment and a medicinal intervention for diverse ailments. This study focuses on enhancing FPH's therapeutic potential by subjecting it to exogenous methyl jasmonate (MeJA) treatment, a strategy aimed at elevating the levels of active constituents to align with clinical and commercial requirements. Employing metabolomics, the impact of MeJA treatment on the lipid and flavonoid profiles of FPH leaves was investigated, revealing a marked increase in flavone glycosides, a subset of flavonoids. Investigation into the regulatory mechanism governing flavone glycoside biosynthesis uncovered elevated expression of structural genes associated with flavonoid production in response to MeJA exposure. Global endogenous hormone analysis pinpointed the selective activation of JA and cytokinin biosynthesis following MeJA treatment. Through a comprehensive integration of transcriptomic and metabolomic data, the cooperative stimulation of glucosyltransferase activity, alongside the JA and cytokinin signaling pathways, orchestrated by MeJA were explored. Furthermore, genes linked to sucrose metabolism exhibited heightened expression, concomitant with a noteworthy surge in antioxidant activity subsequent to MeJA treatment. These findings validate the augmentation of FPH leaf antioxidant capacity through MeJA intervention, while also offering profound insights into the regulatory role of MeJA in flavone glycoside biosynthesis, mediated by the interplay between cytokinin and sucrose metabolism pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2023.113680DOI Listing

Publication Analysis

Top Keywords

meja treatment
16
flavone glycoside
12
glycoside biosynthesis
12
meja
9
cytokinin sucrose
8
biosynthesis meja
8
meja exposure
8
ficus pandurata
8
pandurata hance
8
sucrose metabolism
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!