A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Material extrusion additive manufacturing of poly(lactic acid)/Ti6Al4V@calcium phosphate core-shell nanocomposite scaffolds for bone tissue applications. | LitMetric

Material extrusion additive manufacturing of poly(lactic acid)/Ti6Al4V@calcium phosphate core-shell nanocomposite scaffolds for bone tissue applications.

Int J Biol Macromol

Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Joint Reconstruction Research Center (JRRC), Tehran University of Medical Sciences, Tehran, Iran. Electronic address:

Published: January 2024

The use of porous scaffolds with appropriate mechanical and biological features for the host tissue is one of the challenges in repairing critical-size bone defects. With today's three-dimensional (3D) printing technology, scaffolds can be customized and personalized, thereby eliminating the problems associated with conventional methods. In this work, after preparing Ti6Al4V/Calcium phosphate (Ti64@CaP) core-shell nanocomposite via a solution-based process, by taking advantage of fused deposition modeling (FDM), porous poly(lactic acid) (PLA)-Ti64@CaP nanocomposite scaffolds were fabricated. Scanning electron microscope (SEM) showed that nanostructured calcium phosphate was distributed uniformly on the surface of Ti64 particles. Also, X-ray diffraction (XRD) indicated that calcium phosphate forms an octacalcium phosphate (OCP) phase. As a result of incorporating 6 wt% Ti64@CaP into the PLA, the compressive modulus and ultimate compressive strength values increased from 1.4 GPa and 29.5 MPa to 2.0 GPa and 53.5 MPa, respectively. Furthermore, the differential scanning calorimetry results revealed an increase in the glass transition temperature of PLA, rising from 57.0 to 62.4 °C, due to the addition of 6 wt% Ti64@CaP. However, it is worth noting that there was a moderate decrease in the crystallization and melting temperatures of the nanocomposite filament, which dropped from 97.0 to 89.5 °C and 167 to 162.9 °C, respectively. The scaffolds were seeded with human adipose tissue-derived mesenchymal stem cells (hADSCs) to investigate their biocompatibility and cell proliferation. Calcium deposition, ALP activity, and bone-related proteins and genes were also used to evaluate the bone differentiation potential of hADSCs. The obtained results showed that introducing Ti64@CaP considerably improved in vitro biocompatibility, facilitating the attachment, differentiation, and proliferation of hADSCs. Considering the findings of this study, the 3D-printed nanocomposite scaffold could be considered a promising candidate for bone tissue engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.128040DOI Listing

Publication Analysis

Top Keywords

core-shell nanocomposite
8
nanocomposite scaffolds
8
bone tissue
8
calcium phosphate
8
6 wt% ti64@cap
8
phosphate
5
nanocomposite
5
scaffolds
5
material extrusion
4
extrusion additive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!