Clinical samples from people with influenza disease have been analyzed to assess the presence and abundance of Defective Viral Genomes (DVGs), but these have not been assessed using the same bioinformatic pipeline. The type of DVG most described for influenza infections (deletion DVGs) differs from the most commonly described DVGs from non-segmented negative stranded viruses (5' copyback). This could be attributed to either differences between viruses or the tools used to detect and characterize DVGs. Here we analyze several NGS datasets from people infected with different types of influenza virus using the same bioinformatic pipeline. We observe that 5' copyback DVGs are prevalent in all human clinical samples but not in the cultured samples. To address this discrepancy between clinical and laboratory cultures, we infected cell culture and ferrets with an H5N8 influenza A virus (FLUAV) and analyzed the DVG composition. The results demonstrate that the DVG population is skewed toward 5' copyback DVGs in the in vivo infections and deletion DVGs in the in vitro infections. This demonstrates that there are differences in vivo genome production and in vitro genome production, and this has implications for how the role of DVGs in clinical disease is studied. We also investigate the role the host cofactor ANP32B has in DVG production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10701078 | PMC |
http://dx.doi.org/10.1016/j.virusres.2023.199274 | DOI Listing |
Q Rev Biophys
January 2025
Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), Bilbao, Spain.
The 'Viroporin' family comprises a number of mostly small-sized, integral membrane proteins encoded by animal and plant viruses. Despite their sequence and structural diversity, viroporins share a common functional trend: their capacity to assemble transmembrane channels during the replication cycle of the virus. Their selectivity spectrum ranges from low-pH-activated, unidirectional proton transporters, to size-limited permeating pores allowing passive diffusion of metabolites.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
Microthrombus formation is associated with COVID-19 severity; however, the detailed mechanism remains unclear. In this study, we investigated mouse models with severe pneumonia caused by SARS-CoV-2 infection by using our in vivo two-photon imaging system. In the lungs of SARS-CoV-2-infected mice, increased expression of adhesion molecules in intravascular neutrophils prolonged adhesion time to the vessel wall, resulting in platelet aggregation and impaired lung perfusion.
View Article and Find Full Text PDFJ Virol
January 2025
Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.
Unlabelled: SARS-CoV-2 infection induces interferon (IFN) response by plasmacytoid dendritic cells (pDCs), but the underlying mechanisms are poorly defined. Here, we show that the bulk of the IFN-I release comes from pDC sensing of infected cells and not cell-free virions. Physical contact (or conjugates) between pDCs and infected cells is mediated through CD54-CD11a engagement, and such conjugate formation is required for efficient IFN-I production.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA.
Orthoflaviviruses are positive-sense single-stranded RNA viruses that hijack host proteins to promote their own replication. Zika virus (ZIKV) is infamous among orthoflaviviruses for its association with severe congenital birth defects, notably microcephaly. We previously mapped ZIKV-host protein interactions and identified the interaction between ZIKV non-structural protein 4A (NS4A) and host microcephaly protein ankyrin repeat and LEM domain-containing 2 (ANKLE2).
View Article and Find Full Text PDFUnlabelled: Zika virus (ZIKV) infection can lead to a variety of clinical outcomes, including severe congenital abnormalities. The phosphatidylserine (PS) receptors AXL and TIM-1 are recognized as critical entry factors for ZIKV . However, it remains unclear if and how ZIKV regulates these receptors during infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!