Visceral adipose tissue (VAT) contributes to metabolic dysfunction-associated steatotic liver disease (MASLD), releasing lipogenic substrates and cytokines which promote inflammation. Metabolic healthy obese individuals (MHO) may shift towardsunhealthy ones (MUHO) who develop MASLD, although the mechanisms are still unexplained. Therefore, we aimed to identify dysfunctional pathways and transcriptomic signatures shared by liver and VAT and to outline novel obesity-related biomarkers which feature MASLD in MUHO subjects, at higher risk of progressive liver disease and extrahepatic comorbidities. We performed RNA-sequencing in 167 hepatic samples and in a subset of 79 matched VAT, stratified in MHO and MUHO. A validation analysis was performed in hepatic samples and primary adipocytes from 12 bariatric patients, by qRT-PCR and western blot. We identified a transcriptomic signature that discriminate MUHO vs MHO, including 498 deregulated genes in liver and 189 in VAT. According to pathway and network analyses, oxidative phosphorylation resulted the only significantly downregulated pathway in both tissues in MUHO subjects. Next, we highlighted 5 genes commonly deregulated in liver and VAT, encompassing C6, IGF1, OXA1L, NDUFB11 and KLHL5 and we built a tissue-related score by integrating their expressions. Accordingly to RNAseq data, serum levels of C6 and IGF1, which are the only secreted proteins among those included in the gene signature were downregulated in MUHO vs MHO. Finally, the expression pattern of this 5-genes was confirmed in hepatic and VAT samples. We firstly identified the liver and VAT transcriptional phenotype of MUHO and a gene signature associated with the presence of MASLD in these at risk individuals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2023.115925DOI Listing

Publication Analysis

Top Keywords

gene signature
12
liver vat
12
obese individuals
8
liver disease
8
muho subjects
8
hepatic samples
8
muho mho
8
vat
7
muho
7
liver
6

Similar Publications

Gut bacteria Prevotellaceae related lithocholic acid metabolism promotes colonic inflammation.

J Transl Med

January 2025

Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People's Republic of China.

Background: The conversion of primary bile acids to secondary bile acids by the gut microbiota has been implicated in colonic inflammation. This study investigated the role of gut microbiota related bile acid metabolism in colonic inflammation in both patients with inflammatory bowel disease (IBD) and a murine model of dextran sulfate sodium (DSS)-induced colitis.

Methods: Bile acids in fecal samples from patients with IBD and DSS-induced colitis mice, with and without antibiotic treatment, were analyzed using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS).

View Article and Find Full Text PDF

Background: The prevalence of obesity and type 2 diabetes mellitus (T2DM) is rising globally, particularly among children exposed to adverse intrauterine environments, such as those associated with gestational diabetes mellitus (GDM). Epigenetic modifications, specifically DNA methylation, have emerged as mechanisms by which early environmental exposures can predispose offspring to metabolic diseases. This study aimed to investigate DNA methylation differences in children born to mothers with GDM compared to non-GDM mothers, using saliva samples, and to assess the association of these epigenetic patterns with early growth measurements.

View Article and Find Full Text PDF

The tertiary lymphoid structure (TLS) is recognized as a potential prognosis factor for breast cancer and is strongly associated with response to immunotherapy. Inducing TLS neogenesis can enhance the immunogenicity of tumors and improve the efficacy of immunotherapy. However, our understanding of TLS associated region at the single-cell level remains limited.

View Article and Find Full Text PDF

Background: Metabolic pathways are known to significantly impact the development and advancement of lung cancer. This study sought to establish a signature related to butyrate metabolism that is specifically linked to lung adenocarcinoma (LUAD).

Methods: For the purpose of identifying butyrate metabolism-related differentially expressed genes (BMR-DEGs) in the TCGA-LUAD dataset, we introduced transcriptome data.

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) is an aggressive hematological neoplasm. Little improvement in survival rates has been achieved over the past few decades. Necroptosis has relationship with certain types of malignancies outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!