Photodegradation of biodegradable plastics in aquatic environments: Current understanding and challenges.

Sci Total Environ

Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Meguro-ku, Tokyo 152-8550, Japan. Electronic address:

Published: February 2024

Direct and indirect photolysis are important abiotic processes in aquatic environments through which plastics can be transformed physically and chemically. Transport of biodegradable plastics in water is influenced by vertical mixing and turbulent flow, which make biodegradable plastics remain susceptible to sunlight and photolysis despite their high density. In general, biodegradable plastics are composed of ester containing polymers (e.g., poly(butylene succinate), polyhydroxyalkanoate, and polylactic acid), whereas non-biodegradable plastics are composed of long chains of saturated aliphatic hydrocarbons in their backbones (e.g., polyethylene, polypropylene, and polystyrene). Based on the reviewed knowledge and discussion, we may hypothesize that 1) direct photolysis is more pronounced for non-biodegradation than for biodegradable plastics, 2) smaller plastics such as micro/nano-plastics are more prone to photodegradation and photo-transformation by direct and indirect photolysis, 3) the production rate of reactive oxygen species (ROS) on the surface of biodegradable plastics is higher than that of non-biodegradable plastics, 4) the photodegradation of biodegradable plastics may be promoted by ROS produced from biodegradable plastics themselves, and 5) the subsequent reactions of ROS are more active on biodegradable plastics than non-biodegradable plastics. Moreover, micro/nanoplastics derived from biodegradable plastics serve as more effective carriers of organic pollutants than those from non-biodegradable plastics and thus biodegradable plastics may not necessarily be more ecofriendly than non-biodegradable plastics. However, biodegradable plastics have been largely unexplored from the viewpoint of direct or indirect photolysis. Roles of reactive oxygen species originating from biodegradable plastics should be further explored for comprehensively understanding the photodegradation of biodegradable plastics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168539DOI Listing

Publication Analysis

Top Keywords

biodegradable plastics
56
plastics
21
non-biodegradable plastics
20
biodegradable
13
photodegradation biodegradable
12
direct indirect
12
indirect photolysis
12
aquatic environments
8
plastics composed
8
reactive oxygen
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!