A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Combination of computational new approach methodologies for enhancing evidence of biological pathway conservation across species. | LitMetric

Combination of computational new approach methodologies for enhancing evidence of biological pathway conservation across species.

Sci Total Environ

U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA. Electronic address:

Published: February 2024

The ability to predict which chemicals are of concern for environmental safety is dependent, in part, on the ability to extrapolate chemical effects across many species. This work investigated the complementary use of two computational new approach methodologies to support cross-species predictions of chemical susceptibility: the US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool and Unilever's recently developed Genes to Pathways - Species Conservation Analysis (G2P-SCAN) tool. These stand-alone tools rely on existing biological knowledge to help understand chemical susceptibility and biological pathway conservation across species. The utility and challenges of these combined computational approaches were demonstrated using case examples focused on chemical interactions with peroxisome proliferator activated receptor alpha (PPARα), estrogen receptor 1 (ESR1), and gamma-aminobutyric acid type A receptor subunit alpha (GABRA1). Overall, the biological pathway information enhanced the weight of evidence to support cross-species susceptibility predictions. Through comparisons of relevant molecular and functional data gleaned from adverse outcome pathways (AOPs) to mapped biological pathways, it was possible to gain a toxicological context for various chemical-protein interactions. The information gained through this computational approach could ultimately inform chemical safety assessments by enhancing cross-species predictions of chemical susceptibility. It could also help fulfill a core objective of the AOP framework by potentially expanding the biologically plausible taxonomic domain of applicability of relevant AOPs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10926110PMC
http://dx.doi.org/10.1016/j.scitotenv.2023.168573DOI Listing

Publication Analysis

Top Keywords

computational approach
12
biological pathway
12
chemical susceptibility
12
approach methodologies
8
pathway conservation
8
conservation species
8
support cross-species
8
cross-species predictions
8
predictions chemical
8
chemical
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!