Dendrites and efficiency: Optimizing performance and resource utilization.

Curr Opin Neurobiol

Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece. Electronic address:

Published: December 2023

The brain is a highly efficient system that has evolved to optimize performance under limited resources. In this review, we highlight recent theoretical and experimental studies that support the view that dendrites make information processing and storage in the brain more efficient. This is achieved through the dynamic modulation of integration versus segregation of inputs and activity within a neuron. We argue that under conditions of limited energy and space, dendrites help biological networks to implement complex functions such as processing natural stimuli on behavioral timescales, performing the inference process on those stimuli in a context-specific manner, and storing the information in overlapping populations of neurons. A global picture starts to emerge, in which dendrites help the brain achieve efficiency through a combination of optimization strategies that balance the tradeoff between performance and resource utilization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.conb.2023.102812DOI Listing

Publication Analysis

Top Keywords

performance resource
8
resource utilization
8
dendrites help
8
dendrites
4
dendrites efficiency
4
efficiency optimizing
4
optimizing performance
4
utilization brain
4
brain highly
4
highly efficient
4

Similar Publications

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Degenerated vision, altered lipid metabolism, and expanded chemoreceptor repertoires enable Lindaspio polybranchiata to thrive in deep-sea cold seeps.

BMC Biol

January 2025

CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.

Background: Lindaspio polybranchiata, a member of the Spionidae family, has been reported at the Lingshui Cold Seep, where it formed a dense population around this nascent methane vent. We sequenced and assembled the genome of L. polybranchiata and performed comparative genomic analyses to investigate the genetic basis of adaptation to the deep sea.

View Article and Find Full Text PDF

%diag_test: a generic SAS macro for evaluating diagnostic accuracy measures for multiple diagnostic tests.

BMC Med Inform Decis Mak

January 2025

Institute of Mathematical Sciences Centre for Health Analytics and Modelling (CHaM), Strathmore University, Nairobi, Kenya.

Background: Measures of diagnostic test accuracy provide evidence of how well a test correctly identifies or rules-out disease. Commonly used diagnostic accuracy measures (DAMs) include sensitivity and specificity, predictive values, likelihood ratios, area under the receiver operator characteristic curve (AUROC), area under precision-recall curves (AUPRC), diagnostic effectiveness (accuracy), disease prevalence, and diagnostic odds ratio (DOR) etc. Most available analysis tools perform accuracy testing for a single diagnostic test using summarized data.

View Article and Find Full Text PDF

Background: In Cameroon, like in many other resource-limited countries, data generated by health settings including morbidity and mortality parameters are not always uniform. In the absence of a national guideline necessary for the standardization and harmonization of data, precision of data required for effective decision-making is therefore not guaranteed. The objective of the present study was to assess the reporting style of morbidity and mortality data in healthcare settings.

View Article and Find Full Text PDF

Background: Organic fertilizers are safer and more eco-friendly than chemical fertilizers; hence, organic fertilizers can be used to support sustainable farming. The effects of PGPRs are manifold in agriculture, especially in monoculture crops, where the soil needs to be modified to increase germination, yield, and disease resistance. The objective of this study was to assess the effects of PGPRs combined with fertilizer on the yield and productivity of canola.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!