Biodegradable plastics have been regarded as promising candidates in the struggle against plastic pollution. However, the aging and dynamic leaching process of biodegradable and conventional plastics under photooxidation is still unclear. Herein, three types of non-biodegradable plastics (polypropylene, polyethylene, and polyethylene terephthalate), and two types of biodegradable plastics (polylactic acid and cornstarch-based plastics) were treated with 21 days of photooxidation followed by 13 days of dark conditions. Scanning electron microscopy was applied to display the morphological changes. Also, the carbonyl index, oxygen-to-carbon ratio, and contact angle were utilized to characterize the aging degree of the plastic surface. Unexpectedly, biodegradable plastics did not always display a greater aging degree than non-biodegradable plastics. Moreover, the dissolved organic carbon during the leaching process was identified using excitation-emission matrix fluorescence spectroscopy. The findings suggested that biodegradable plastics showed the potential to release more dissolved organic carbon. Particularly, the polylactic acid plastic displayed higher concentrations and more types of dissolved organic carbon release than that of conventional plastics in our experiment. This research highlights the necessity for monitoring the aging process of both biodegradable and non-biodegradable plastics and the non-negligible ecological risk of leached organic pollutants due to plastic degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.119561 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!