While the neural mechanisms underpinning the perception of muscularity are poorly understood, recent progress has been made using the psychophysical technique of visual adaptation. Prolonged visual exposure to high (low) muscularity bodies causes subsequently viewed bodies to appear less (more) muscular, revealing a recalibration of the neural populations encoding muscularity. Here, we use visual adaptation to further elucidate the tuning properties of the neural processes underpinning muscle perception for the upper and lower halves of the body. Participants manipulated the apparent muscularity of upper and lower bodies until they appeared 'normal', prior to and following exposure to a series of top/bottom halves of bodies that were either high or low in muscularity. In Experiment 1, participants were adapted to isolated own-gender body halves from one of four conditions; increased (muscularity) upper (body half), increased lower, decreased upper, or decreased lower. Despite the presence of muscle aftereffects when the body halves the participants viewed and manipulated were congruent, there was only weak evidence of muscle aftereffect transfer between the upper and lower halves of the body. Aftereffects were significantly weaker when body halves were incongruent, implying minimal overlap in the neural mechanisms encoding muscularity for body half. Experiment 2 examined the generalisability of Experiment 1's findings in a more ecologically valid context using whole-body stimuli, producing a similar pattern of results as Experiment 1, but with no evidence of cross-adaptation. Taken together, the findings are most consistent with muscle-encoding neural populations that are body-half selective. As visual adaptation has been implicated in cases of body size and shape misperception, the present study furthers our current understanding of how these perceptual inaccuracies, particularly those involving muscularity, are developed, maintained, and may potentially be treated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cortex.2023.10.006 | DOI Listing |
PLoS Pathog
January 2025
Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America.
The intracellular protozoan Toxoplasma gondii manipulates host cell signaling to avoid targeting by autophagosomes and lysosomal degradation. Epidermal Growth Factor Receptor (EGFR) is a mediator of this survival strategy. However, EGFR expression is limited in the brain and retina, organs affected in toxoplasmosis.
View Article and Find Full Text PDFPLoS One
January 2025
School of Emergency Management, Institute of Disaster Prevention, Sanhe, Hebei, China.
With the increasing number of patients with Alzheimer's Disease (AD), the demand for early diagnosis and intervention is becoming increasingly urgent. The traditional detection methods for Alzheimer's disease mainly rely on clinical symptoms, biomarkers, and imaging examinations. However, these methods have limitations in the early detection of Alzheimer's disease, such as strong subjectivity in diagnostic criteria, high detection costs, and high misdiagnosis rates.
View Article and Find Full Text PDFPLoS One
January 2025
School of Information and Communication Engineering, Beijing University of Information Science and Technology, Bei Jing City, China.
To enhance the intelligent classification of computer vulnerabilities and improve the efficiency and accuracy of network security management, this study delves into the application of a comprehensive classification system that integrates the Memristor Neural Network (MNN) and an improved Temporal Convolutional Neural Network (TCNN) in network security management. This system not only focuses on the precise classification of vulnerability data but also emphasizes its core role in strengthening the network security management framework. Firstly, the study designs and implements a neural network model based on memristors.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Electrical Engineering, College of Engineering, Taif University, Taif, Saudi Arabia.
Modernizing power systems into smart grids has introduced numerous benefits, including enhanced efficiency, reliability, and integration of renewable energy sources. However, this advancement has also increased vulnerability to cyber threats, particularly False Data Injection Attacks (FDIAs). Traditional Intrusion Detection Systems (IDS) often fall short in identifying sophisticated FDIAs due to their reliance on predefined rules and signatures.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
Background: Risk factors and mechanisms of cognitive impairment (CI) after aneurysmal subarachnoid hemorrhage (aSAH) are unclear. This study used a neuropsychological battery, MRI, ERP and CSF and plasma biomarkers to predict long-term cognitive impairment after aSAH.
Materials And Methods: 214 patients hospitalized with aSAH (n = 125) or unruptured intracranial aneurysms (UIA) (n = 89) were included in this prospective cohort study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!