AI Article Synopsis

  • Alzheimer's disease (AD) is the most prevalent type of dementia among the elderly, and a lack of understanding of its mechanisms has resulted in no effective treatments currently being available.
  • This study utilized high-resolution 1H NMR spectroscopy on OXYS rats to identify crucial metabolic changes in the hippocampus across different life stages, focusing on the preclinical period, manifestation, and active progression of AD symptoms.
  • Findings highlighted significant metabolic shifts, including increased scyllo-inositol and decreased hypotaurine in OXYS rats, suggesting these changes may serve as early predictors and biomarkers for the development of AD, potentially applicable to humans.

Article Abstract

Background: Alzheimer's disease (AD) is the most common type of dementia in the elderly. Incomplete knowledge about the pathogenesis of this disease determines the absence of medications for the treatment of AD today. Animal models can provide the necessary knowledge to understand the mechanisms of biochemical processes occurring in the body in health and disease.

Objective: To identify the most promising metabolomic predictors and biomarkers reflecting metabolic disorders in the development of AD signs.

Methods: High resolution 1H NMR spectroscopy was used for quantitative metabolomic profiling of the hippocampus of OXYS rats, an animal model of sporadic AD, which demonstrates key characteristics of this disease. Animals were examined during several key periods: 20 days group corresponds to the "preclinical" period preceding the development of AD signs, during their manifestation (3 months), and active progression (18 months). Wistar rats of the same age were used as control.

Results: Ranges of variation and mean concentrations were established for 59 brain metabolites. The main metabolic patterns during aging, which are involved in energy metabolism pathways and metabolic shifts of neurotransmitters, have been established. Of particular note is the significant increase of scyllo-inositol and decrease of hypotaurine in the hippocampus of OXYS rats as compared to Wistars for all studied age groups.

Conclusions: We suggest that the accumulation of scyllo-inositol and the reduction of hypotaurine in the brain, even at an early age, can be considered as predictors and potential biomarkers of the development of AD signs in OXYS rats and, probably, in humans.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-230706DOI Listing

Publication Analysis

Top Keywords

oxys rats
12
quantitative metabolomic
8
hippocampus oxys
8
development signs
8
metabolomic analysis
4
analysis rat
4
rat hippocampus
4
hippocampus effects
4
age
4
effects age
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!