Cellular senescence is a hallmark of aging and has been linked to age-related diseases. Age-related macular degeneration (AMD), the most common aging-related retinal disease, is prospectively associated with retinal pigment epithelial (RPE) senescence. However, the mechanism of RPE cell senescence remains unknown. In this study, tert-butyl hydroperoxide (TBH)-induced ARPE-19 cells and D-galactose-treated C57 mice were used to examine the cause of elevated iron in RPE cell senescence. Ferric ammonium citrate (FAC)-treated ARPE-19 cells and C57 mice were used to elucidated the mechanism of iron overload-induced RPE cell senescence. Molecular biology techniques for the assessment of iron metabolism, cellular senescence, autophagy, and mitochondrial function in vivo and in vitro. We found that iron level was increased during the senescence process. Ferritin, a major iron storage protein, is negatively correlated with intracellular iron levels and cell senescence. NCOA4, a cargo receptor for ferritinophagy, mediates degradation of ferritin and contributes to iron accumulation. Besides, we found that iron overload leads to mitochondrial dysfunction. As a result, mitochondrial DNA (mtDNA) is released from damaged mitochondria to cytoplasm. Cytoplasm mtDNA activates the cGAS-STING pathway and promotes inflammatory senescence-associated secretory phenotype (SASP) and cell senescence. Meanwhile, iron chelator Deferoxamine (DFO) significantly rescues RPE senescence and retinopathy induced by FAC or D-gal in mice. Taken together, these findings imply that iron derived from NCOA4-mediated ferritinophagy causes cellular senescence via the cGAS-STING pathway. Inhibiting iron accumulation may represent a promising therapeutic approach for age-related diseases such as AMD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657394 | PMC |
http://dx.doi.org/10.1038/s41420-023-01712-7 | DOI Listing |
Immun Ageing
December 2024
Université Paris Cité, INSERM, PARCC, Paris, France.
Background: Immune ageing complicates cancer treatment in older individuals. While immunotherapy targeting the PD-1/PD-L1 pathway can reinvigorate T cells, these cells tend to become senescent with age. This study investigates different CD8 T cell subsets usually associated with senescence, in cancer patients over 70 years old who are undergoing anti-PD-1/PD-L1 immunotherapy, and examines the relationship between these senescent cells and prior chemotherapy exposure.
View Article and Find Full Text PDFNat Aging
December 2024
Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS) UMR7284, Institut National de la Santé et de la Recherche Médicale (INSERM) U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France.
Although senescent cells can be eliminated by the immune system, they tend to accumulate with age in various tissues. Here we show that senescent cells can evade immune clearance by natural killer (NK) cells by upregulating the expression of the disialylated ganglioside GD3 at their surface. The increased level of GD3 expression on senescent cells that naturally occurs upon aging in liver, lung, kidney or bones leads to a strong suppression of NK-cell-mediated immunosurveillance.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Aggressive breast cancers often fail or acquire resistance to radiotherapy. To develop new strategies to improve the outcome of aggressive breast cancer patients, we studied how PARP inhibition radiosensitizes breast cancer models to proton therapy, which is a radiotherapy modality that generates more DNA damage in the tumor than standard radiotherapy using photons. Two human BRCA1-mutated breast cancer cell lines and their isogenic BRCA1-recovered pairs were treated with a PARP inhibitor and irradiated with photons or protons.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
High glucose (HG) induced endothelial senescence is related to endothelial dysfunction and cardiovascular complications in diabetic patients. Humanin, a member of mitochondrial derived peptides (MDPs), is thought to contribute to aging-related cardiovascular protection. The goal of the study is to explore the pathogenesis of HG-induced endothelial senescence and potential anti-senescent effects of Humanin.
View Article and Find Full Text PDFBiogerontology
December 2024
Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
Mitochondrial DNA encodes essential components of the respiratory chain complexes, serving as the foundation of mitochondrial respiratory function. Mutations in mtDNA primarily impair energy metabolism, exerting far-reaching effects on cellular physiology, particularly in the context of aging. The intrinsic vulnerability of mtDNA is increasingly recognized as a key driver in the initiation of aging and the progression of its related diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!