Colistin-induced structural and biochemical changes in carbapenem-resistant Acinetobacter baumannii isolated from the hospital environment.

J Infect Public Health

Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia. Electronic address:

Published: December 2023

Background: Acinetobacter baumannii is an emerging multidrug-resistant bacterium and is considered as one of the important causes of nosocomial infections.

Objectives: The main objectives are to determine the drug-resistant pattern of beta-lactamase-producing A. baumannii, colistin-induced structural and biochemical changes.

Methods: A. baumannii strains were isolated from the restrooms using the selective media, viz., restroom door, restroom floor, washing area, and restroom tap. A total of 120 samples were collected from all four sampling sites. These strains and their drug-resistance patterns were identified. Then carbapenem-resistance was analyzed and the occurrence of the drug-resistant gene (blaOXA-23) was determined. Colistin was applied at various concentrations (20 - 100 µg/mL) and the molecular mechanism of A. baumannii was analysed.

Results: The bacterial population was high on doors (53 ± 2 CFU/mL), followed by restroom tap (19 ± 1 CFU/mL), restroom floor (14 ± 3 CFU/mL), and washing area (3 ± 0 CFU/mL), respectively. A total of 343 A. baumannii strains were isolated from the 120 samples obtained for one year from the restroom. The isolated bacteria showed resistance to selected carbapenems, with 100% isolates being resistant to imipenem, followed by cefotaxime (1.4 ± 0.2% susceptibility). More blaOXA-23 gene carrying strains were isolated from restroom tap(89 ± 2.1%) than other sources. Colistin exhibited bactericidal activity against drug-resistant A. baumannii. Treating A. baumannii strain with 100 µg/mL colistin induced cell membrane roughness in vitro. Scanning Electron Microscopy (SEM) analysis revealed moderate cell shrinkage after treatment with colistin. Bacterial cells treated with hydrogen peroxide or colistin for 30 min induced the production of hydroxyl radicals. The bacterial lysis increased fluorescence and hydroxyl radicals, and released cellular protein and sugars.

Conclusions: The isolated A. baumannii was resistant to imipenem and showed susceptibility to colistin. Colistin disrupted cell membrane in drug-resistant A. baumannii in vitro. The regular screening for drug-resistance among A. baumannii strains can help monitor the outbreak of A. baumannii and manage control measures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jiph.2023.11.011DOI Listing

Publication Analysis

Top Keywords

baumannii
12
baumannii strains
12
strains isolated
12
colistin-induced structural
8
structural biochemical
8
acinetobacter baumannii
8
restroom floor
8
washing area
8
restroom tap
8
120 samples
8

Similar Publications

Antimicrobial peptides (AMPs) are promising agents for treating antibiotic-resistant bacterial infections. Although discovering novel AMPs is crucial for combating multidrug-resistant bacteria and biofilm-related infections, their clinical potential relies on precise, real-time evaluation of efficacy, toxicity, and mechanisms. Optical diffraction tomography (ODT), a label-free imaging technology, enables real-time visualization of bacterial morphological changes, membrane damage, and biofilm formation over time.

View Article and Find Full Text PDF

Background: Nosocomial pneumonia is a significant healthcare challenge, particularly in the face of rising antimicrobial resistance among Gram-negative bacteria. The production of extended spectrum beta-lactamase (ESBL) exacerbates treatment complexities.

Aim: This study investigates the prevalence and resistance patterns of ESBL-producing and non-ESBL Gram-negative bacteria in nosocomial pneumonia cases in Georgian hospitals to inform antibiotic stewardship and treatment strategies.

View Article and Find Full Text PDF

Development of a novel multi-epitope subunit mRNA vaccine candidate to combat Acinetobacter baumannii.

Sci Rep

January 2025

Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

Acinetobacter baumannii, an opportunistic bacterium prevalent in various environment, is a significant cause of nosocomial infections in ICUs. As the causative agent of pneumonia, septicemia, and meningitis, A. baumannii typically exhibits multidrug resistance and is associated with poor prognosis, thus led to a challenge for researchers in developing new treatment and prevention methods.

View Article and Find Full Text PDF

Measuring water pollution effects on antimicrobial resistance through explainable artificial intelligence.

Environ Pollut

January 2025

Università degli Studi di Bari Aldo Moro, Dipartimento Interateneo di Fisica M. Merlin, Bari, 70125, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Bari, 70125, Italy.

Antimicrobial resistance refers to the ability of pathogens to develop resistance to drugs designed to eliminate them, making the infections they cause more difficult to treat and increasing the likelihood of disease diffusion and mortality. As such, antimicrobial resistance is considered as one of the most significant and universal challenges to both health and society, as well as the environment. In our research, we employ the explainable artificial intelligence paradigm to identify the factors that most affect the onset of antimicrobial resistance in diversified territorial contexts, which can vary widely from each other in terms of climatic, economic and social conditions.

View Article and Find Full Text PDF

Treatment of serious bacterial infections with antimicrobial agents, such as antibiotics, is a major clinical challenge, because of growing bacterial resistance to multiple agents. Combination therapy (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!