Previous studies have shown that expression of the endothelial laminin receptor α6β4 integrin in the brain is uniquely restricted to arterioles. As exposure to chronic mild hypoxia (CMH, 8 % O) stimulates robust angiogenic and arteriogenic remodeling responses in the brain, the goal of this study was to determine how CMH influences cerebrovascular expression of the β4 integrin as well as its potential ligands, laminin 411 and 511, containing the α4 and α5 laminin subunits respectively, and then define how aging impacts this expression. We observed the following: (i) CMH launched a robust arteriogenic remodeling response both in the young (10 weeks) and aged (20 months) brain, correlating with an increased number of β4 integrin+ vessels, (ii) while the laminin α4 subunit is expressed evenly across all cerebral blood vessels, laminin α5 was highly expressed preferentially on β4 integrin+ arterioles, (iii) CMH-induced arteriolar remodeling was associated with strong downregulation of the laminin α4 subunit but no change in the laminin α5 subunit, (iv) in addition to its expression on arterioles, β4 integrin was also expressed at lower levels on capillaries specifically in white matter (WM) tracts but not in the grey matter (GM), and (v), these observations were consistent in both the brain and spinal cord, and age had no obvious impact. Taken together, our findings suggest that laminin 511 may be a specific ligand for α6β4 integrin and that dynamic switching of the laminin subunits α4 and α5 might play an instructive role in arteriogenic remodeling. Furthermore, β4 integrin expression differentiates WM from GM capillaries, highlighting a novel and important difference.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10872476 | PMC |
http://dx.doi.org/10.1016/j.mvr.2023.104625 | DOI Listing |
Cardiovasc Pathol
January 2025
Department of Anatomical Sciences, St. George's University, School of Medicine, West Indies, Grenada; Department of Pathology, St. George's University, School of Medicine, West Indies, Grenada; Department of Clinical Anatomy, Mayo Clinic, Rochester, Minnesota, USA; Nicolaus Copernicus Superior School, College of Medical Sciences, Olsztyn, Poland. Electronic address:
Vascular occlusive diseases remain a major health burden worldwide, necessitating a deeper understanding of the adaptive responses that mitigate their impact. Arteriogenesis, the growth and remodeling of collateral vessels in response to arterial occlusion, is a vital defense mechanism that counteracts fluid shear stress-induced vascular stenosis or occlusion. While physical factors driving arteriogenesis have been extensively studied, the specific cellular mediators involved are poorly understood.
View Article and Find Full Text PDFSci Transl Med
June 2024
Academic Department of Vascular Surgery, South Bank Section, School of Cardiovascular and Metabolic Medicine & Sciences, BHF Centre of Excellence, King's College London, London SE1 7EH, UK.
Despite decades of effort aimed at developing clinically effective cell therapies, including mixed population mononuclear cells, to revascularize the ischemic limb, there remains a paucity of patient-based studies that inform the function and fate of candidate cell types. In this study, we showed that circulating proangiogenic/arteriogenic monocytes (PAMs) expressing the FcγIIIA receptor CD16 were elevated in patients with chronic limb-threatening ischemia (CLTI), and these amounts decreased after revascularization. Unlike CD16-negative monocytes, PAMs showed large vessel remodeling properties in vitro when cultured with endothelial cells and smooth muscle cells and promoted salvage of the ischemic limb in vivo in a mouse model of hindlimb ischemia.
View Article and Find Full Text PDFCurr Opin Cardiol
September 2024
Division of Cardiac Surgery.
Purpose Of Review: We aim to provide a comprehensive examination of the literature linking elevated rates of cardiovascular disease (CVD) in individuals of South Asian ethnicity with the severity of circulating vascular regenerative cell exhaustion.
Recent Findings: Recent findings have demonstrated reduced bioavailability of pro-vascular progenitor cell subsets in individuals with T2D and obesity. Depletion of vascular regenerative cells in the bone marrow - coupled with decreased mobilization into circulation - can negatively impact the capacity for vascular repair and exacerbate CVD risk.
Microvasc Res
March 2024
San Diego Biomedical Research Institute, 3525 John Hopkins Court, Suite 200, San Diego, CA 92121, USA. Electronic address:
Previous studies have shown that expression of the endothelial laminin receptor α6β4 integrin in the brain is uniquely restricted to arterioles. As exposure to chronic mild hypoxia (CMH, 8 % O) stimulates robust angiogenic and arteriogenic remodeling responses in the brain, the goal of this study was to determine how CMH influences cerebrovascular expression of the β4 integrin as well as its potential ligands, laminin 411 and 511, containing the α4 and α5 laminin subunits respectively, and then define how aging impacts this expression. We observed the following: (i) CMH launched a robust arteriogenic remodeling response both in the young (10 weeks) and aged (20 months) brain, correlating with an increased number of β4 integrin+ vessels, (ii) while the laminin α4 subunit is expressed evenly across all cerebral blood vessels, laminin α5 was highly expressed preferentially on β4 integrin+ arterioles, (iii) CMH-induced arteriolar remodeling was associated with strong downregulation of the laminin α4 subunit but no change in the laminin α5 subunit, (iv) in addition to its expression on arterioles, β4 integrin was also expressed at lower levels on capillaries specifically in white matter (WM) tracts but not in the grey matter (GM), and (v), these observations were consistent in both the brain and spinal cord, and age had no obvious impact.
View Article and Find Full Text PDFFront Neurol
May 2023
Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States.
Rationale: The etiology and pathophysiological mechanisms of moyamoya angiopathy (MMA) remain largely unknown. MMA is a progressive, occlusive cerebrovascular disorder characterized by recurrent ischemic and hemorrhagic strokes; with compensatory formation of an abnormal network of perforating blood vessels that creates a collateral circulation; and by aberrant angiogenesis at the base of the brain. Imbalance of angiogenic and vasculogenic mechanisms has been proposed as a potential cause of MMA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!