Clear-cutting is a common silvicultural practice. Although temporal changes in the soil fungal community after clear-cutting have been widely investigated, little is known about stand-level variations in the spatial distribution of soil fungi, particularly at the clear-cut edge. We performed spatial soil sampling in three clear-cuts (0.5 ha), edge habitats, and surrounding forests 8 years after clear-cutting to examine the impact of clear-cutting on the soil fungal community (diversity, composition, guilds, and biomass) and soil properties in a managed Pinus sylvestris forest in northern Spain. Our analyses showed small differences in the composition of the soil fungal community between edge, forest, and clear-cut zones, with <4 % of the species strictly associated with one or two zones. The richness, diversity, and evenness of the fungal community in the edge zone was not significantly different to that in the forest or clear-cut zones, although the clear-cut core had approximately a third fewer ectomycorrhizal species than the edge or the forest. Saprotrophic fungi were widespread across the clear-cut-forest gradient. Soil fungal biomass varied significantly between zones, ranging from 4 to 5 mg g dry soil in the forest and at the forest edge to 1.7 mg g dry soil in the clear-cut area. Soil organic matter, pH, nitrogen, and phosphorus did not differ significantly between edge, forest, and clear-cutting zones and were not significantly related to the fungal community composition. Overall, our study showed that small-scale clear-cut treatments are optimal to guarantee, in the medium-term, soil fungal communities within harvested areas and at the forest edge that are comparable to soil fungal communities in the forest, even though the amount of fungal biomass in the clear-cut zone is lower than at the forest edge or in the forest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.168628 | DOI Listing |
Curr Microbiol
January 2025
Unit of Microbiology and Immunology, ICMR-Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India.
In recent years, there has been a global threat from emerging vector-borne diseases (VBD), despite the implementation of several vector control programs. Considering the benefits of bacterial pesticides, the present study aimed to isolate potential mosquitocidal bacteria from the various soil types collected from the Kasaragod (12.5°N, 75.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa.
Plant detritus is abundant in grasslands but decomposes slowly and is relatively nutrient-poor, whereas animal carcasses are labile and nutrient-rich. Recent studies have demonstrated that labile nutrients from carcasses can significantly alter the long-term soil microbial function at an ecosystem scale. However, there is a paucity of knowledge on the functional and structural response and temporal scale of soil microbiomes beneath large herbivore carcasses.
View Article and Find Full Text PDFAm J Bot
January 2025
Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA.
Premise: The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress.
Methods: We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high).
Glob Chang Biol
January 2025
Department of Renewable Resources, University of Alberta, Edmonton, Canada.
Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by O-HO approach).
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Soil Science, University of Tehran, Tehran, Iran.
Soil compaction is a pressing issue in agriculture that significantly hinders plant growth and soil health, necessitating effective strategies for mitigation. This study examined the effects of sugarcane bagasse, both in its raw form and as biochar, along with biological activators (Bacillus simplex UTT1 and Phanerochaete chrysosporium) on soil characteristics and corn (Zea mays L.) plant biomass in a compacted soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!