Spatially-explicit effects of small-scale clear-cutting on soil fungal communities in Pinus sylvestris stands.

Sci Total Environ

Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain; Joint Research Unit CTFC - AGROTECNIO - CERCA, Av. Alcalde Rovira Roure 191, E-25198 Lleida, Spain.

Published: January 2024

AI Article Synopsis

  • Clear-cutting, a common forestry practice, affects the soil fungal community in managed forests, but stand-level variations, particularly at the edge of clear-cuts, are not well understood.
  • Soil sampling from clear-cuts and surrounding areas showed small differences in fungal community composition and diversity, with the clear-cut zone having fewer ectomycorrhizal species but similar richness and evenness compared to the edge and forest zones.
  • Despite lower fungal biomass in clear-cuts, other soil properties like organic matter, pH, nitrogen, and phosphorus remained consistent across all zones, indicating that small-scale clear-cutting can maintain comparable soil fungal communities over the medium term.

Article Abstract

Clear-cutting is a common silvicultural practice. Although temporal changes in the soil fungal community after clear-cutting have been widely investigated, little is known about stand-level variations in the spatial distribution of soil fungi, particularly at the clear-cut edge. We performed spatial soil sampling in three clear-cuts (0.5 ha), edge habitats, and surrounding forests 8 years after clear-cutting to examine the impact of clear-cutting on the soil fungal community (diversity, composition, guilds, and biomass) and soil properties in a managed Pinus sylvestris forest in northern Spain. Our analyses showed small differences in the composition of the soil fungal community between edge, forest, and clear-cut zones, with <4 % of the species strictly associated with one or two zones. The richness, diversity, and evenness of the fungal community in the edge zone was not significantly different to that in the forest or clear-cut zones, although the clear-cut core had approximately a third fewer ectomycorrhizal species than the edge or the forest. Saprotrophic fungi were widespread across the clear-cut-forest gradient. Soil fungal biomass varied significantly between zones, ranging from 4 to 5 mg g dry soil in the forest and at the forest edge to 1.7 mg g dry soil in the clear-cut area. Soil organic matter, pH, nitrogen, and phosphorus did not differ significantly between edge, forest, and clear-cutting zones and were not significantly related to the fungal community composition. Overall, our study showed that small-scale clear-cut treatments are optimal to guarantee, in the medium-term, soil fungal communities within harvested areas and at the forest edge that are comparable to soil fungal communities in the forest, even though the amount of fungal biomass in the clear-cut zone is lower than at the forest edge or in the forest.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168628DOI Listing

Publication Analysis

Top Keywords

soil fungal
16
fungal community
12
clear-cutting soil
8
pinus sylvestris
8
soil
7
clear-cutting
5
spatially-explicit effects
4
effects small-scale
4
small-scale clear-cutting
4
fungal
4

Similar Publications

In recent years, there has been a global threat from emerging vector-borne diseases (VBD), despite the implementation of several vector control programs. Considering the benefits of bacterial pesticides, the present study aimed to isolate potential mosquitocidal bacteria from the various soil types collected from the Kasaragod (12.5°N, 75.

View Article and Find Full Text PDF

The Functional and Structural Succession of Mesic-Grassland Soil Microbiomes Beneath Decomposing Large Herbivore Carcasses.

Environ Microbiol

January 2025

Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa.

Plant detritus is abundant in grasslands but decomposes slowly and is relatively nutrient-poor, whereas animal carcasses are labile and nutrient-rich. Recent studies have demonstrated that labile nutrients from carcasses can significantly alter the long-term soil microbial function at an ecosystem scale. However, there is a paucity of knowledge on the functional and structural response and temporal scale of soil microbiomes beneath large herbivore carcasses.

View Article and Find Full Text PDF

Premise: The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress.

Methods: We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high).

View Article and Find Full Text PDF

Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by O-HO approach).

View Article and Find Full Text PDF

Soil compaction is a pressing issue in agriculture that significantly hinders plant growth and soil health, necessitating effective strategies for mitigation. This study examined the effects of sugarcane bagasse, both in its raw form and as biochar, along with biological activators (Bacillus simplex UTT1 and Phanerochaete chrysosporium) on soil characteristics and corn (Zea mays L.) plant biomass in a compacted soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!