GPSM1 in POMC neurons impairs brown adipose tissue thermogenesis and provokes diet-induced obesity.

Mol Metab

The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

Published: January 2024

Objective: G-protein-signaling modulator 1 (GPSM1) has been proved the potential role in brain tissues, however, whether GPSM1 in hypothalamic nuclei, especially in POMC neurons is essential for the proper regulation of whole-body energy balance remains unknown. The aim of our current study was to explore the role of GPSM1 in POMC neurons in metabolic homeostasis.

Methods: We generated POMC neuron specific GPSM1 deficiency mice and subjected them to a High Fat Diet to monitor metabolic phenotypes in vivo. By using various molecular, biochemical, immunofluorescent, immunohistochemical analyses, and cell culture studies to reveal the pathophysiological role of GPSM1 in POMC neurons and elucidate the underlying mechanisms of GPSM1 regulating POMC neurons activity.

Results: We demonstrated that mice lacking GPSM1 in POMC neurons were protected against diet-induced obesity, glucose dysregulation, insulin resistance, and hepatic steatosis. Mechanistically, GPSM1 deficiency in POMC neurons induced enhanced autophagy and improved leptin sensitivity through PI3K/AKT/mTOR signaling, thereby increasing POMC expression and α-MSH production, and concurrently enhancing sympathetic innervation and activity, thus resulting in decreased food intake and increased brown adipose tissue thermogenesis.

Conclusions: Our findings identify a novel function of GPSM1 expressed in POMC neurons in the regulation of whole-body energy balance and metabolic homeostasis by regulating autophagy and leptin sensitivity, which suggests that GPSM1 in the POMC neurons could be a promising therapeutic target to combat obesity and obesity-related metabolic disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10698273PMC
http://dx.doi.org/10.1016/j.molmet.2023.101839DOI Listing

Publication Analysis

Top Keywords

pomc neurons
36
gpsm1 pomc
20
gpsm1
11
pomc
10
neurons
9
brown adipose
8
adipose tissue
8
diet-induced obesity
8
regulation whole-body
8
whole-body energy
8

Similar Publications

Although mammals resist both acute weight loss and weight gain, the neural circuitry mediating bi-directional defense against weight change is incompletely understood. Global constitutive deletion of the melanocortin-3-receptor (MC3R) impairs the behavioural response to both anorexic and orexigenic stimuli, with MC3R knockout mice demonstrating increased weight gain following anabolic challenges and increased weight loss following anorexic challenges (i.e.

View Article and Find Full Text PDF

Chronic sleep deprivation disturbs energy balance modulated by suprachiasmatic nucleus efferents in mice.

BMC Biol

December 2024

Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention Ministry of Education, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.

Background: Epidemiologic researches show that short sleep duration may affect feeding behaviors resulting in higher energy intake and increased risk of obesity, but the further mechanisms that can interpret the causality remain unclear. The circadian rhythm is fine-tuned by the suprachiasmatic nucleus (SCN) as the master clock, which is essential for driving rhythms in food intake and energy metabolism through neuronal projections to the arcuate nucleus (ARC) and paraventricular nucleus (PVN).

Results: We showed that chronic SD-induced aberrant expressions of AgRP/NPY and POMC attributed to compromised JAK/STAT3 signals and reduced energy expenditure in the mice, which can be rescued with AAV-genetic overexpression of BMAL1 into SCN.

View Article and Find Full Text PDF

Transcriptomic analysis of the HPT axis in a model of oligoasthenozoospermia induced by Adenine in rats.

Exp Mol Pathol

December 2024

College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750000, China; Key Laboratory of Modernization of Minority Medicine, Ministry of Education, Ningxia Medical University, Yinchuan 750000, China. Electronic address:

Male infertility is most commonly caused by oligozoospermia, and its pathogenesis is still poorly understood at the molecular level. This study used RNA sequencing (RNA-Seq) technology to identify candidate genes and regulatory pathways that regulate semen quality in the hypothalamic, pituitary, and testicular tissues of healthy rats and Adenine-induced oligozoospermia model rats. Semen quality testing and histological analysis of testicular tissues were performed on both groups of rats.

View Article and Find Full Text PDF

Excessive consumption of vegetable oils such as soybean and canolla oils containing ω-6 polyunsaturated fatty acids is considered one of the most important epidemiological factors leading to the progression of lifestyle-related diseases. However, the underlying mechanism of vegetable-oil-induced organ damage is incompletely elucidated. Since proopiomelanocortin (POMC) neurons in the hypothalamus are related to the control of appetite and energy expenditure, their cell degeneration/death is crucial for the occurrence of obesity.

View Article and Find Full Text PDF

During the periparturient period, dairy cows experience negative energy balance due to reduced feed intake, leading to adipose tissue breakdown, liver damage, and fat accumulation. This study examined the gut-liver-brain axis to explore the link between fatty liver disease, changes in hypothalamic appetite-related neurons, and microbiome shifts in dairy cows. Thirty cows were monitored, with daily DMI recordings and blood sampling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!