The discharge of greywater from ships, an uncounted sea-based source of microplastics (MPs), is a growing concern. Yet, empirical data on MPs from this source are currently limited. Here, the abundances and characteristics of MPs in greywater from a research vessel were investigated according to water usage type (e.g., galley, cabin, and laundry). The mean abundance of MPs was highest in greywater from the laundry (177,667 n/m), followed by the cabins (133,833 n/m) and galley (75,000 n/m). However, no significant differences were found in the MP abundances among greywater types due to high variability of triplicate samples collected every five days. Fiber-type MPs accounted for 66% of the total MP abundance and fragment-type MPs for 34%. Microplastics in the size range of 100-200 μm exhibited the highest levels among size classes. The dominant polymer identified in all greywater samples was polyester (53%), followed by polypropylene (23%). Marine coating origin MPs (6%) were also observed in all types of greywater. The greywater generation rate during the cruise was 0.15 m/person∙day. Annual MP emissions per person by the greywater discharge of the research vessel was estimated to be 4.1 × 10 n/person∙year (equivalent to 3.0 g/person∙year).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2023.122941 | DOI Listing |
Bioresour Technol
December 2024
College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:
Microalgal-bacteria biofilm shows great potential in low-cost greywater treatment. Accurately predicting treated greywater quality is of great significance for water reuse. In this work, machine learning models were developed for simulating and predicting linear alkylbenzene sulfonate (LAS) removal using 152-days collected data from a battled oxygenic microalgal-bacteria biofilm reactor (MBBfR).
View Article and Find Full Text PDFWater Res
December 2024
CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal.
Green walls for greywater treatment have emerged as a solution to increase green spaces in densely urbanized areas while providing treated greywater for reuse. Over the past decade, numerous studies have focused on optimizing these systems, though most address specific operational conditions and evaluate a limited set of performance parameters. This review synthesizes the existing literature using a meta-analysis to identify key operational factors and treatment performance metrics.
View Article and Find Full Text PDFACS ES T Water
December 2024
Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic.
Traditional wastewater treatment often fails to remove pharmaceuticals, necessitating advanced solutions, such as TiO photocatalysis, for post-treatment. However, conventionally applied powder TiO can be cumbersome to separate from treated water. To solve this issue, this study immobilized three TiO photocatalysts (Anatase 16, Anatase 5, and P25) into porous layers and evaluated their efficacy for the degradation of three pharmaceuticals (naproxen, NPX; sulfamethoxazole, SMX; metformin, MTF) in standard solutions and greywater pretreated in a membrane bioreactor (MBR).
View Article and Find Full Text PDFWater Res
December 2024
Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales (UNSW), High St, Kensington, NSW, 2052, Australia; Institute for Artificial Intelligence Research and Development of Serbia, 21000 Novi Sad, Serbia.
Vegetated biofiltration system (VBS) is an effective green technology for urban stormwater and greywater treatment. However, VBS is yet to be optimised for effective treatment of wastewater, particularly if it contains trace organic chemicals (TrOCs). The effect of plant species has not been addressed under TrOC wastewater loading.
View Article and Find Full Text PDFMycorrhiza
December 2024
Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
In recent years, the dispersal of potentially invasive plants, animals, and pathogens via international trading routes for fresh agricultural goods has been the subject of intensive research and risk assessment. Comparatively little is known about the potential impact of global food trade on the spreading of symbiotic soil microorganisms, such as arbuscular mycorrhizal (AM) fungi. The present study thus assessed whether internationally traded underground crop harvest products carry AM fungal propagules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!