Trinitrotoluene (TNT) in water will damage biological tissues and organs of the human body due to its high toxicity and risk. However, the simple and rapid detection of TNT in water is always a challenging task. Herein, we reported a novel aggregation-induced emission-a vesicle (AIE-a-V) as fluorescent nanoprobe for the detection of TNT in water by π-π self-assembly of π-π stacking induced aggregation-emission. The AIE-a-V was spherical in shape with a hydrodynamic diameter of ∼106 nm and possessed robust stability. In addition, the AIE-a-V showed strong fluorescence and its fluorescence would quickly disappear after contact with TNT. Based on this, without any cumbersome operation, the AIE-a-V could detect the presence of TNT in water within 60 s, and its minimum detectable concentration was as low as 50 nM. Moreover, the AIE-a-V could selectively detect TNT in water and would not be affected by other components, including other aromatic compounds, toxic metals, and acid-base. Therefore, the new AIE-a-V with simplicity, rapidity, sensitivity and selectivity have great application potential in the detection of TNT in water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2023.123617 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!