Objective: This work explores the advances in conversational agents aimed at the detection of mental health disorders, and specifically the screening of depression. The focus is put on those based on voice interaction, but other approaches are also tackled, such as text-based interaction or embodied avatars.
Methods: PRISMA was selected as the systematic methodology for the analysis of existing literature, which was retrieved from Scopus, PubMed, IEEE Xplore, APA PsycINFO, Cochrane, and Web of Science. Relevant research addresses the detection of depression using conversational agents, and the selection criteria utilized include their effectiveness, usability, personalization, and psychometric properties.
Results: Of the 993 references initially retrieved, 36 were finally included in our work. The analysis of these studies allowed us to identify 30 conversational agents that claim to detect depression, specifically or in combination with other disorders such as anxiety or stress disorders. As a general approach, screening was implemented in the conversational agents taking as a reference standardized or psychometrically validated clinical tests, which were also utilized as a golden standard for their validation. The implementation of questionnaires such as Patient Health Questionnaire or the Beck Depression Inventory, which are used in 65% of the articles analyzed, stand out.
Conclusions: The usefulness of intelligent conversational agents allows screening to be administered to different types of profiles, such as patients (33% of relevant proposals) and caregivers (11%), although in many cases a target profile is not clearly of (66% of solutions analyzed). This study found 30 standalone conversational agents, but some proposals were explored that combine several approaches for a more enriching data acquisition. The interaction implemented in most relevant conversational agents is text-based, although the evolution is clearly towards voice integration, which in turns enhances their psychometric characteristics, as voice interaction is perceived as more natural and less invasive.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijmedinf.2023.105272 | DOI Listing |
J Med Syst
January 2025
Intelligent Systems, Delft University of Technology, Delft, The Netherlands.
To equip new counsellors at a Dutch child helpline with the needed counselling skills, the helpline uses role-playing, a form of learning through simulation in which one counsellor-in-training portrays a child seeking help and the other portrays a counsellor. However, this process is time-intensive and logistically challenging-issues that a conversational agent could help address. In this paper, we propose an initial design for a computer agent that acts as a child help-seeker to be used in a role-play setting.
View Article and Find Full Text PDFJMIR AI
January 2025
Faculty of Social Science, Ruhr University Bochum, Bochum, Germany.
Background: Conversational agents (CAs) are finding increasing application in health and social care, not least due to their growing use in the home. Recent developments in artificial intelligence, machine learning, and natural language processing have enabled a variety of new uses for CAs. One type of CA that has received increasing attention recently is smart speakers.
View Article and Find Full Text PDFInt J Nurs Stud
December 2024
School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China.; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, China.; Joint Research Centre for Primary Health Care, The Hong Kong Polytechnic University, Hong Kong SAR, China.. Electronic address:
Background: Effective management of physical and psychological symptoms is a critical component of comprehensive care for both chronic disease patients and apparently healthy individuals experiencing episodic symptoms. Conversational agents, which are dialog systems capable of understanding and generating human language, have emerged as a potential tool to enhance symptom management through interactive support.
Objective: To examine the characteristics and effectiveness of conversational agent-delivered interventions reported in randomized controlled trials (RCTs) in the management of both physical and psychological symptoms.
Adv Skin Wound Care
January 2025
At the Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, United States, Adrian Chen, BS, Aleksandra Qilleri, BS, and Timothy Foster, BS, are Medical Students. Amit S. Rao, MD, is Project Manager, Department of Surgery, Wound Care Division, Northwell Wound Healing Center and Hyperbarics, Northwell Health, Hempstead. Sandeep Gopalakrishnan, PhD, MAPWCA, is Associate Professor and Director, Wound Healing and Tissue Repair Analytics Laboratory, School of Nursing, College of Health Professions, University of Wisconsin-Milwaukee. Jeffrey Niezgoda, MD, MAPWCA, is Founder and President Emeritus, AZH Wound Care and Hyperbaric Oxygen Therapy Center, Milwaukee, and President and Chief Medical Officer, WebCME, Greendale, Wisconsin. Alisha Oropallo, MD, is Professor of Surgery, Donald and Barbara Zucker School of Medicine and The Feinstein Institutes for Medical Research, Manhasset New York; Director, Comprehensive Wound Healing Center, Northwell Health; and Program Director, Wound and Burn Fellowship program, Northwell Health.
Generative artificial intelligence (AI) models are a new technological development with vast research use cases among medical subspecialties. These powerful large language models offer a wide range of possibilities in wound care, from personalized patient support to optimized treatment plans and improved scientific writing. They can also assist in efficiently navigating the literature and selecting and summarizing articles, enabling researchers to focus on impactful studies relevant to wound care management and enhancing response quality through prompt-learning iterations.
View Article and Find Full Text PDFSci Rep
January 2025
Donders Institute for Brain, Cognition and Behaviour, Radboud University, Wundtlaan 1, 6525 XD Nijmegen, Nijmegen, The Netherlands.
Increasing evidence suggests that interlocutors use visual communicative signals to form predictions about unfolding utterances, but there is little data on the predictive potential of facial signals in conversation. In an online experiment with virtual agents, we examine whether facial signals produced by an addressee may allow speakers to anticipate the response to a question before it is given. Participants (n = 80) viewed videos of short conversation fragments between two virtual humans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!