Adsorption of some cationic dyes onto two models of graphene oxide.

J Mol Model

Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein, 9300, South Africa.

Published: November 2023

Context: The search for highly efficient adsorbent materials remains a significant requirement in the field of adsorption for wastewater treatment. Computational study can highly contribute to the identification of efficient material. In this work, we propose a computational approach to study the adsorption of four cationic basic dyes, basic blue 26 (BB26), basic green 1 (BG1), basic yellow 2 (BY2), and basic red 1 (BR1), onto two models of graphene oxide as adsorbents. The main objectives of this study are the assessment of the adsorption capacity of the graphene oxide towards basic dyes and the evaluation of the environmental and temperature effects on the adsorption capacity. Quantum theory of atoms in molecules (QTAIM) analysis has been used to understand the interactions between the dyes and graphene oxides. In addition, adsorption free energies of the dyes onto graphene oxides are calculated in gas and solvent phases for temperatures varying from 200 to 400 K. As a result, the adsorption free energy varies linearly depending on the temperature, highlighting the importance of temperature effects in the adsorption processes. Furthermore, the results indicate that the environment (through the solvation) considerably affects the calculated adsorption free energies. Overall, the results show that the two models of graphene oxide used in this work are efficient for removing dyes from wastewater.

Methods: We have optimized the complexes formed by the interaction of dyes with graphene oxides at the PW6B95-D3/def2-SVP level of theory. The SMD solvation model realizes the implicit solvation, and water is used as the solvent. Calculations are performed using the Gaussian 16 suite of program. QTAIM analysis is performed using the AIMAll program. Gibbs free energies as function of temperature are calculated using the TEMPO program.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10657294PMC
http://dx.doi.org/10.1007/s00894-023-05761-8DOI Listing

Publication Analysis

Top Keywords

graphene oxide
16
models graphene
12
dyes graphene
12
graphene oxides
12
adsorption free
12
free energies
12
adsorption
9
adsorption cationic
8
basic dyes
8
adsorption capacity
8

Similar Publications

This study focuses on enhancing the performance of photodetector through the utilization of inorganic perovskite material. It emphasizes that the unique properties of perovskite materials contribute to the superior performance of the photodetector. The focus is on the design and enhancement of CsSnI-based photodetector having graphene oxide (GO) and PCBM as charge transport layer, analysing their potential for improved operation.

View Article and Find Full Text PDF

Expression of concern for 'Graphene oxide: an efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes' by Sanny Verma , , 2011, , 12673-12675, https://doi.org/10.1039/C1CC15230K.

View Article and Find Full Text PDF

Control of water for high-yield and low-cost sustainable electrochemical synthesis of uniform monolayer graphene oxide.

Nat Commun

January 2025

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China.

With the rapid development of graphene industry, low-cost sustainable synthesis of monolayer graphene oxide (GO) has become more and more important for many applications such as water desalination, thermal management, energy storage and functional composites. Compared to the conventional chemical oxidation methods, water electrolytic oxidation of graphite-intercalation-compound (GIC) shows significant advantages in environmental-friendliness, safety and efficiency, but suffers from non-uniform oxidation, typically ~50 wt.% yield with ~50% monolayers.

View Article and Find Full Text PDF

The impact of graphene oxide nanoparticles on the migratory behavior of metastatic human breast cancer cell, MDA-MB-231.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.

Breast cancer (BC) with aggressive metastasis is a serious ongoing public health problem among women. Graphene oxide (GO) has an inhibitory effect on the migration rate and metastasis of BC cells, but its various aspects have not yet been explored. This paper aims to research into the effect of GO nanoparticles (GO-Np) on the migratory behavior of MDA-MB-231 as a metastatic human BC cell line.

View Article and Find Full Text PDF

The development of all-solid-state frustrated Lewis pairs (FLPs) metal-free hydrogenation catalysts with excellent activity and stability remains a significant challenge. In this work, B, N codoped FLPs catalysts (De-rGO-NB) were prepared by the strategy of fabricating carbon defects and heteroatom doping on the surface of reduced graphene oxide and applied in the selective hydrogenation of α,β-unsaturated aldehydes to unsaturated alcohols. It was found that electron-rich pyridine-N (Lewis base) and adjacent electron-deficient B-N (Lewis acid) sites could be constructed on the surface of reduced graphene oxide using dicyandiamide and metaboric acid as N and B sources, thus forming FLPs sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!