Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The development of cost-effective non-noble metal electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) opens up the possibility for sustainable energy systems. Herein, we report a surface overcoating strategy with lanthanum organic complex (La-OC) as the precursor to prepare lanthanum species (La-SPc) encapsulated in nitrogen, fluorine, and sulfur self-doped porous carbon (NFS-PC) composites (La-SPc@NFS-PC) for efficient ORR and OER. The La-SPc is introduced not only as a promoter to increase the electrochemical stability of the La-SPc@NFS-PC catalysts but also to tailor the electronic structure of NFS-PC due to the unique electrochemical properties of La-SPc. In addition, the integration of La-SPc and NFS-PC can improve the electronic conductivity of composites by inducing electron redistribution and lowering the band gap, which is advantageous in enhancing the kinetics of charge transfer. Simultaneously, benefiting from the optimized porous structure and positive cooperation of La-SPc with NFS-PC shells, the obtained La-SPc@NFS-PC-3 delivers robust bifunctional ORR/OER activities and stabilities. More importantly, the Zn-air battery (ZAB) assembled with La-SPc@NFS-PC-3 demonstrates an outstanding power density (181.1 mW cm) and long cycling life, outperforming the commercial Pt/C. This work offers a rational approach to preparing high-efficiency rare-earth-based catalysts and provides potential applications in ZABs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.3c11773 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!