Benign termination of mega-ampere (MA) level runaway current has been convincingly demonstrated in recent JET and DIII-D experiments, establishing it as a leading candidate for runaway mitigation on ITER. This comes in the form of a runaway flush by parallel streaming loss along stochastic magnetic field lines formed by global magnetohydrodynamic instabilities, which are found to correlate with a low-Z injection that purges the high-Z impurities from a post-thermal-quench plasma. Here, we show the competing physics that govern the postflush reconstitution of the runaway current in an ITER-like reactor where significantly higher current is expected. The trapped "runaways" are found to dominate the seeding for runaway reconstitution, and the incomplete purge of high-Z impurities helps drain the seed but produces a more efficient avalanche, two of which compete to produce a 2-3 MA step in current drop before runaway reconstitution of the plasma current.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.108.L043201 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Intelligent Polymer Research Institute, Faculty of Engineering and Information Sciences, Innovation Campus, University of Wollongong, Wollongong, NSW 2500, Australia.
Textile-based lithium-ion batteries (LIBs) are in great demand to power wearable electronics. They currently face a key safety challenge, particularly concerning mechanical abuse that could trigger thermal runaway, causing harm to individuals. Here, we report on Kevlar-fabric-based LIBs that can afford high impact tolerance while offering excellent electrochemical performance comparable to metal-foil-based cells.
View Article and Find Full Text PDFJ Health Care Poor Underserved
November 2024
Med Phys
November 2024
Particle Physics, Astrophysics and Medical Imaging Department, KTH Royal Institute of Technology, Stockholm, Sweden.
Background: The permitted input power density of rotating anode x-ray sources is limited by the performance of available target materials. The commonly used simplified formulas for the focal spot surface temperature ignore the tube voltage despite its variation in clinical practice. Improved modeling of electron transport and target erosion, as proposed in this work, improves the prediction of x-ray output degradation by target erosion, the absolute x-ray dose output and the quality of diagnostic imaging and orthovolt cancer therapy for a wide range of technique factors.
View Article and Find Full Text PDFQual Health Res
November 2024
University of Wisconsin-Platteville, Platteville, WI, USA.
Heliyon
November 2024
Composite Design and Manufacturing Research Group, School of Mechanical and Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!