A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Composite spiral waves in discrete-time systems. | LitMetric

Composite spiral waves in discrete-time systems.

Phys Rev E

International Joint Research Center of Simulation and Control for Population Ecology of Yangtze River in Anhui, Anqing Normal University, Anqing 246011, People's Republic of China.

Published: October 2023

Spiral waves are a type of typical pattern in open reaction-diffusion systems far from thermodynamic equilibrium. The study of spiral waves has attracted great interest because of its nonlinear characteristics and extensive applications. However, the study of spiral waves has been confined to continuous-time systems, while spiral waves in discrete-time systems have been rarely reported. In recent years, discrete-time models have been widely studied in ecology because of their appropriateness to systems with nonoverlapping generations and other factors. Therefore, spiral waves in discrete-time systems need to be studied. Here, we investigated a novel type of spiral wave called a composite spiral wave in a discrete-time predator-pest model, and we revealed the formation mechanism. To explain the observed phenomena, we defined and quantified a move state effect of multiperiod states caused by the coupling of adjacent stable multiperiod orbits, which is strictly consistent with the numerical results. The other move state effect is caused by an unstable focus, which is the state of the local points at the spiral center. The combined effect of these two influences can lead to rich dynamical behaviors of spiral waves, and the specific structure of the composite spiral waves is the result of the competition of the two effects in opposite directions. Our findings shed light on the dynamics of spiral waves in discrete-time systems, and they may guide the prediction and control of pests in deciduous forests.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.108.044205DOI Listing

Publication Analysis

Top Keywords

spiral waves
36
waves discrete-time
16
discrete-time systems
16
composite spiral
12
spiral
11
waves
9
systems spiral
8
study spiral
8
spiral wave
8
move state
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!