Crack front waves (FWs) are dynamic objects that propagate along moving crack fronts in three-dimensional (3D) materials. We study FW dynamics in the framework of a 3D phase-field platform that features a rate-dependent fracture energy Γ(v) (v is the crack propagation velocity) and intrinsic length scales, and quantitatively reproduces the high-speed oscillatory instability in the quasi-2D limit. We show that in-plane FWs feature a rather weak time dependence, with decay rate that increases with dΓ(v)/dv>0, and largely retain their properties upon FW-FW interactions, similarly to a related experimentally observed solitonic behavior. Driving in-plane FWs into the nonlinear regime, we find that they propagate slower than predicted by a linear perturbation theory. Finally, by introducing small out-of-plane symmetry-breaking perturbations, coupled in- and out-of-plane FWs are excited, but the out-of-plane component decays under pure tensile loading. Yet, including a small antiplane loading component gives rise to persistent coupled in- and out-of-plane FWs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.108.L043002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!