Positive phase coupling plays an attractive role in inducing in-phase synchrony in an ensemble of phase oscillators. Positive coupling involving both amplitude and phase continues to be attractive, leading to complete synchrony in identical oscillators (limit cycle or chaotic) or phase coherence in oscillators with heterogeneity of parameters. In contrast, purely positive phase velocity coupling may originate a repulsive effect on pendulumlike oscillators (with rotational motion) to bring them into a state of diametrically opposite phases or a splay state. Negative phase velocity coupling is necessary to induce synchrony or coherence in the general sense. The contrarian roles of phase coupling and phase velocity coupling on the synchrony of networks of second-order phase oscillators have been explored here. We explain our proposition using networks of two model systems, a second-order phase oscillator representing the pendulum or the superconducting Josephson junction dynamics, and a voltage-controlled oscillations in neurons model. Numerical as well as semianalytical approaches are used to confirm our results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.108.L042201 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!