Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Soft, quasilocalized excitations (QLEs) are known to generically emerge in a broad class of disordered solids and to govern many facets of the physics of glasses, from wave attenuation to plastic instabilities. In view of this key role of QLEs, shedding light upon several open questions in glass physics depends on the availability of computational tools that allow one to study QLEs' statistical mechanics. The latter is a formidable task since harmonic analyses are typically contaminated by hybridizations of QLEs with phononic excitations at low frequencies, obscuring a clear picture of QLEs' abundance, typical frequencies, and other important micromechanical properties. Here we present an efficient algorithm to detect the field of quasilocalized excitations in structural computer glasses. The algorithm introduced takes a computer-glass sample as input and outputs a library of QLEs embedded in that sample. We demonstrate the power of the algorithm by reporting the spectrum of glassy excitations in two-dimensional computer glasses featuring a huge range of mechanical stability, which is inaccessible using conventional harmonic analyses due to phonon hybridizations. Future applications are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.108.044124 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!