Background: Distance simulation is defined as simulation experiences in which participants and/or facilitators are separated from each other by geographic distance and/or time. The use of distance simulation as an education technique expanded rapidly with the recent COVID-19 pandemic, with a concomitant increase in scholarly work.
Methods: A scoping review was performed to review and characterize the distance simulation literature. With the assistance of an informationist, the literature was systematically searched. Each abstract was reviewed by two researchers and disagreements were addressed by consensus. Risk of bias of the included studies was evaluated using the Risk of Bias 2 (RoB 2) and Risk of Bias in Non-randomized Studies of Interventions (ROBINS-I) tools.
Results: Six thousand nine hundred sixty-nine abstracts were screened, ultimately leading to 124 papers in the final dataset for extraction. A variety of simulation modalities, contexts, and distance simulation technologies were identified, with activities covering a range of content areas. Only 72 papers presented outcomes and sufficient detail to be analyzed for risk of bias. Most studies had moderate to high risk of bias, most commonly related to confounding factors, intervention classification, or measurement of outcomes.
Conclusions: Most of the papers reviewed during the more than 20-year time period captured in this study presented early work or low-level outcomes. More standardization around reporting is needed to facilitate a clear and shared understanding of future distance simulation research. As the broader simulation community gains more experience with distance simulation, more studies are needed to inform when and how it should be used.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656877 | PMC |
http://dx.doi.org/10.1186/s41077-023-00266-z | DOI Listing |
Ultrasonics
January 2025
College of Aerospace Engineering, Chongqing University, Chongqing 400044, China. Electronic address:
This study delves into the feasibility of leveraging quasi-static component (QSC) generation during primary Lamb wave propagation to discern subtle alterations in the interfacial properties of a two-layered plate. Unlike the second-harmonic generation of Lamb waves, QSC generation doesn't necessitate precise phase-velocity matching but rather requires an approximate matching of group velocities to ensure the emergence of cumulative growth effects. This unique characteristic empowers the QSC-based nonlinear ultrasonic method to effectively surmount the limitations associated with inherent dispersion and multimode traits of Lamb wave propagation.
View Article and Find Full Text PDFJ Clin Med
December 2024
The David J Apple Center for Vision Research, Department of Ophthalmology, Heidelberg University Eye Clinic, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
This laboratory study aims to assess the effects of misaligning different trifocal intraocular lenses (IOLs) under varying spectral and corneal spherical aberration (SA) conditions. With an IOL metrology device under monochromatic and polychromatic conditions, the following models were studied: AT ELANA 841P, AT LISA Tri 839MP, FineVision HP POD F, Acrysof IQ PanOptix, and Tecnis Synergy ZFR00V. The SA was simulated using an aberration-free and average-SA cornea.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518000, China.
This paper introduces a novel energy-efficient lightweight, void hole avoidance, localization, and trust-based scheme, termed as Energy-Efficient and Trust-based Autonomous Underwater Vehicle (EETAUV) protocol designed for 6G-enabled underwater acoustic sensor networks (UASNs). The proposed scheme addresses key challenges in UASNs, such as energy consumption, network stability, and data security. It integrates a trust management framework that enhances communication security through node identification and verification mechanisms utilizing normal and phantom nodes.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Roadway Engineering, School of Transportation, Southeast University, Nanjing 211189, China.
Ground-Penetrating Radar (GPR) has demonstrated significant advantages in the non-destructive detection of road structural defects due to its speed, safety, and efficiency. This paper proposes a three-dimensional (3D) reconstruction method for GPR images, integrating the back-projection (BP) imaging algorithm to accurately determine the size, location, and other parameters of road structural defects. Initially, GPR detection images were preprocessed, including direct wave removal and wavelet denoising, followed by the application of the BP algorithm to effectively restore the defect's location and size.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical Engineering and Information Technology, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany.
Because of their resilience, Time-of-Flight (ToF) cameras are now essential components in scientific and industrial settings. This paper outlines the essential factors for modeling 3D ToF cameras, with specific emphasis on analyzing the phenomenon known as "wiggling". Through our investigation, we demonstrate that wiggling not only causes systematic errors in distance measurements, but also introduces periodic fluctuations in statistical measurement uncertainty, which compounds the dependence on the signal-to-noise ratio (SNR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!