Clinical cases and experimental evidence revealed that electronic cigarettes (ECIG) induce serious adverse health effects, but underlying mechanisms remain to be fully uncovered. Based on recent exploratory evidence, investigating the effects of ECIG on macrophages can broadly define potential mechanisms by focusing on the effect of ECIG exposure with or without nicotine. Here we investigated the effect of ECIG-aerosol exposure on macrophages (MQ) phenotype, inflammatory response, and function of macrophages.MQ were cultured at air liquid interface and exposed to ECIG-aerosol. Oxidative stress was determined by reactive oxygen species (ROS), heat shock protein 60 (HSP60), glutathione peroxidase (GPx) and heme oxygenase1 (HMOX1). Lipid accumulation and lipid peroxidation were defined by lipid staining and level of malondialdehyde (MDA) respectively. MQ polarization was identified by surface expression markers CD86, CD11C and CD206 as well as pro-inflammatory and anti-inflammatory cytokines in gene and protein level. Phagocytosis of E. coli by MQ was investigated by fluorescence-based phagocytosis assay.ECIG-aerosol exposure in presence or absence of nicotine induced oxidative stress evidenced by ROS, HSP60, GPx, GPx4 and HMOX1 upregulation in MQ. ECIG-aerosol exposure induced accumulation of lipids and the lipid peroxidation product MDA in MQ. Pro-inflammatory MQ (M1) markers CD86 and CD11C but not anti-inflammatory MQ (M2) marker CD206 were upregulated in response to ECIG-aerosol exposure. In addition, ECIG induced pro-inflammatory cytokines IL-1beta and IL-8 in gene level and IL-6, IL-8, and IL-1beta in protein level whereas ECIG exposure downregulated anti-inflammatory cytokine IL-10 in protein level. Phagocytosis activity of MQ was downregulated by ECIG exposure. shRNA mediated lipid scavenger receptor 'CD36' silencing inhibited ECIG-aerosol-induced pro-inflammatory MQ polarization and recovered phagocytic activity of MQ.ECIG exposure alters lung lipid homeostasis and thus induced inflammation by inducing M1 type MQ and impair phagocytic function, which could be a potential cause of ECIG-induced lung inflammation in healthy and inflammatory exacerbation in disease condition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655339 | PMC |
http://dx.doi.org/10.1186/s12950-023-00367-6 | DOI Listing |
Cardiovasc Toxicol
January 2025
Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA.
Pregnancy is a vulnerable time with significant cardiovascular changes that can lead to adverse outcomes, which can extend into the postpartum window. Exposure to emissions from electronic cigarettes (Ecig), commonly known as "vaping," has an adverse impact on cardiovascular function during pregnancy and post-natal life of offspring, but the postpartum effects on maternal health are poorly understood. We used a Sprague Dawley rat model, where pregnant dams are exposed to Ecigs between gestational day (GD)2-GD21 to examine postpartum consequences.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA, USA.
Secondhand smoke exposure (SHSe) is a public health threat for people with cystic fibrosis (CF) and other lung diseases. Primary smoking reduces CFTR channel function, the causative defect in CF. We reported that SHSe worsens respiratory and nutritional outcomes in CF by disrupting immune responses and metabolic signaling.
View Article and Find Full Text PDFTob Control
January 2025
Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, Pennsylvania, USA
Introduction: Although numerous studies have estimated the inhalation dose of metals emitted from electronic cigarettes (e-cigs), the impact of factors including aerosol size and the atomising power of e-cig aerosols on estimating the inhalation dose of metals remains underexplored. A comprehensive understanding of these determinants is essential to assess the health risks associated with inhaling e-cig aerosols, which may contain potentially harmful metals.
Objectives: The aim of this study is to elucidate the mass and inhalation doses of potentially harmful metals in e-cig aerosols by different particle size and their association with the various atomising powers of e-cig devices and flavours.
Arch Toxicol
January 2025
Department of Medicine, University of California, San Diego, CA, 92093, USA.
E-cigarettes (E.cigs) cause inflammation and damage to human organs, including the lungs and heart. In the gut, E.
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2024
Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA.
The objective of this study is to investigate the potential mutagenic effects of the exposure of mice to aerosols produced from the component liquids of an electronic nicotine delivery system (ENDS). The use of electronic cigarettes (e-cigs) and ENDSs has increased tremendously over the past two decades. From what we know to date, ENDSs contain much lower levels of known carcinogens than tobacco smoke.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!