The G protein-coupled receptor ADGRE5 (CD97) binds to various metabolites that play crucial regulatory roles in metabolism. However, its function in the antiviral innate immune response remains to be determined. In this study, we report that CD97 inhibits virus-induced type-I interferon (IFN-I) release and enhances RNA virus replication in cells and mice. CD97 was identified as a new negative regulator of the innate immune receptor RIG-I, and RIG-1 degradation led to the suppression of the IFN-I signaling pathway. Furthermore, overexpression of CD97 promoted the ubiquitination of RIG-I, resulting in its degradation, but did not impact its mRNA expression. Mechanistically, CD97 upregulates RNF125 expression to induce RNF125-mediated RIG-I degradation via K48-linked ubiquitination at Lys181 after RNA virus infection. Most importantly, CD97-deficient mice are more resistant than wild-type mice to RNA virus infection. We also found that sanguinarine-mediated inhibition of CD97 effectively blocks VSV and SARS-CoV-2 replication. These findings elucidate a previously unknown mechanism through which CD97 negatively regulates RIG-I in the antiviral innate immune response and provide a molecular basis for the development of new therapeutic strategies and the design of targeted antiviral agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687259PMC
http://dx.doi.org/10.1038/s41423-023-01103-zDOI Listing

Publication Analysis

Top Keywords

innate immune
16
immune response
12
rig-i degradation
12
rna virus
12
cd97
8
cd97 negatively
8
negatively regulates
8
rnf125-mediated rig-i
8
antiviral innate
8
virus infection
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!