The detection of Japanese encephalitis virus in municipal wastewater during an acute disease outbreak.

J Appl Microbiol

South Australian Water Corporation, Adelaide 5001, SA, Australia.

Published: December 2023

Aim: To demonstrate the capability of wastewater-based surveillance (WBS) as a tool for detecting potential cases of Japanese Encephalitis Virus (JEV) infection in the community.

Methods And Results: In this study, we explore the potential of WBS to detect cases of JEV infection by leveraging from an established SARS-CoV-2 wastewater surveillance program. We describe the use of two reverse transcriptase quantitative polymerase chain reaction (RTqPCR) assays targeting JEV to screen archived samples from two wastewater treatment plants (WWTPs). JEV was detected in wastewater samples collected during a timeframe coinciding with a cluster of acute human encephalitis cases, alongside concurrent evidence of JEV detection in mosquito surveillance and the sentinel chicken programs within South Australia's Riverland and Murraylands regions.

Conclusions: Current surveillance measures for JEV encounter multiple constraints, which may miss the early stages of JEV circulation or fail to capture the full extent of transmission. The detection of JEV in wastewater during a disease outbreak highlights the potential WBS has as a complementary layer to existing monitoring efforts forming part of the One Health approach required for optimal disease response and control.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jambio/lxad275DOI Listing

Publication Analysis

Top Keywords

japanese encephalitis
8
encephalitis virus
8
disease outbreak
8
jev
8
jev infection
8
potential wbs
8
wastewater
5
detection japanese
4
virus municipal
4
municipal wastewater
4

Similar Publications

Zika virus (ZIKV) is a medically important mosquito-borne orthoflavivirus, but no vaccines are currently available to prevent ZIKV-associated disease. In this study, we compared three recombinant chimeric viruses developed as candidate vaccine prototypes (rJEV/ZIKV, rJEV/ZIKV, and rJEV/ZIKV), in which the two neutralizing antibody-inducing prM and E genes from each of three genetically distinct ZIKV strains were used to replace the corresponding genes of the clinically proven live-attenuated Japanese encephalitis virus vaccine SA-14-2 (rJEV). In WHO-certified Vero cells (a cell line suitable for vaccine production), rJEV/ZIKV exhibited the slowest viral growth, formed the smallest plaques, and displayed a unique protein expression profile with the highest ratio of prM to cleaved M when compared to the other two chimeric viruses, rJEV/ZIKV and rJEV/ZIKV, as well as their vector, rJEV.

View Article and Find Full Text PDF

T cells have been identified as correlates of protection in viral infections. However, the level of vaccine-induced T cells needed and the extent to which they alone can control acute viral infection in humans remain uncertain. Here we conducted a double-blind, randomized controlled trial involving vaccination and challenge in 33 adult human volunteers, using the live-attenuated yellow fever (YF17D) and chimeric Japanese encephalitis-YF17D (JE/YF17D) vaccines.

View Article and Find Full Text PDF

Japanese encephalitis virus (JEV) is a neurotropic zoonotic pathogen that poses a serious threat to public health. Currently, there is no specific therapeutic agent available for JEV infection, primarily due to the complexity of its infection mechanism and pathogenesis. Extracellular vesicles (EVs) have been known to play an important role in viral infection, but their specific functions in JEV infection remain unknown.

View Article and Find Full Text PDF

Background: Acute encephalopathy is a severe condition predominantly affecting children with viral infections. The purpose of this study was to elucidate the epidemiology, treatment, and management of acute encephalopathy. The study also aimed to understand how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has affected epidemiological trends.

View Article and Find Full Text PDF

Japanese encephalitis virus (JEV), a neuroinvasive and neurovirulent orthoflavivirus, can be prevented in humans with the SA14-14-2 vaccine, a live-attenuated version derived from the wild-type SA14 strain. To determine the viral factors responsible for the differences in pathogenicity between SA14 and SA14-14-2, we initially established a reverse genetics system that includes a pair of full-length infectious cDNAs for both strains. Using this cDNA pair, we then systematically exchanged genomic regions between SA14 and SA14-14-2 to generate 20 chimeric viruses and evaluated their replication capability in cell culture and their pathogenic potential in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!