Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The presence of pharmaceutical compounds in aqueous environments has become a growing concern due to their potential adverse effects on ecosystems and human health. In this work, synthesis of a novel bio based nanocomposite using a biowaste, palm seed is employed for the preparation of biochar. The bio derived nanocomposite consist of polypyrrole (Ppy), graphene oxide (GO), and biochar, is employed for the Carbamazepine (CBZ) removal. The synthesized nanocomposite, Ppy-GO-Biochar, is characterized using various analytical techniques. The characterization results confirmed the successful synthesis of the Ppy-GO-Biochar nanocomposite with the desired morphology and structural properties. The effect of variables is investigated and the optimum conditions are found as: pH (7.8), adsorbent dosage (1.4 g/L), agitation speed (200 rpm) and temperature (39.5 °C). The results demonstrated that a removal efficiency of over 97.74% and uptake of 45.045 mg/g is achieved for CBZ. Furthermore, the CBZ removal followed pseudo-second-order, indicating chemisorption as the predominant mechanism. The CBZ sorption equilibrium is well represented by Langmuir and Freundlich isotherm. Thermodynamic results show that CBZ sorption is endothermic and spontaneous. Mechanism of CBZ sorption using the synthesized nanocomposite follows π-π interaction and electrostatic attraction. Molecular docking studies were also performed for the sorption of CBZ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.140696 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!