AI Article Synopsis

  • Diclofenac (DCF) is a widespread contaminant in water that poses significant toxicity risks to aquatic life, necessitating its removal through effective treatment methods.
  • Traditional treatment techniques are ineffective for DCF, but electrochemical oxidation (EO) shows over 98% removal efficiency while also disinfecting pathogens found in water.
  • However, the study reveals that by-products formed during the EO process can still be harmful to freshwater ecosystems, indicating a need for careful assessment of potential environmental impacts.

Article Abstract

Diclofenac (DCF), a contaminant of emerging concern, is a non-steroidal anti-inflammatory drug widely detected in water bodies, which demonstrated harmful acute and chronic toxicity toward algae, zooplankton and aquatic invertebrates, therefore its removal from impacted water is necessary. DCF is recalcitrant toward traditional treatment technologies, thus, innovative approaches are required. Among them, electrochemical oxidation (EO) has shown promising results. In this research, an innovative multidisciplinary approach is proposed to assess the electrochemical oxidation (EO) of diclofenac from wastewater by integrating the investigations on the removal efficiency and by-product identification with the disinfection capacity and the assessment of the effect on environmental geno-toxicity of by-products generated through the oxidation. The electrochemical treatment successfully degraded DCF by achieving >98 % removal efficiency, operating with NaCl 0.02 M at 50 A m. By-product identification analyses showed the formation of five DCF parental compounds generated by decarboxylic and CN cleavage reactions. The disinfection capacity of the EO technique was evaluated by carrying out microbiological tests on pathogens generally found in aquatic environments, including two rod-shaped Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), one rod-shaped Gram-positive bacterium (Bacillus atrophaeus), and one Gram-positive coccus (Enterococcus hirae). Eco-toxicity was evaluated in freshwater organisms (algae, rotifers and crustaceans) belonging to two trophic levels through acute and chronic tests. Genotoxicity tests were carried out by Comet assay, and relative expression levels of catalase, manganese and copper superoxide dismutase genes in crustaceans. Results highlight the effectiveness of EO for the degradation of diclofenac and the inactivation of pathogens; however, the downstream mixture results in being harmful to the aquatic ecosystem.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.168511DOI Listing

Publication Analysis

Top Keywords

electrochemical oxidation
12
by-product identification
12
oxidation diclofenac
8
acute chronic
8
removal efficiency
8
disinfection capacity
8
integrated approach
4
approach assessment
4
electrochemical
4
assessment electrochemical
4

Similar Publications

The diversity and heterogeneity of biomarkers has made the development of general methods for single-step quantification of analytes difficult. For individual biomarkers, electrochemical methods that detect a conformational change in an affinity binder upon analyte binding have shown promise. However, because the conformational change must operate within a nanometer-scale working distance, an entirely new sensor, with a unique conformational change, must be developed for each analyte.

View Article and Find Full Text PDF

This study addresses the critical issue of irreversible oxidation in hypochlorite (ClO⁻) sensing by a phenothiazine-based compound, which typically leads to the probe's degradation and loss of functionality. We introduce a novel fluorescence probe, (2-(5-(10 H-phenothiazin-10-yl)thiophen-2-yl)-1 H-benzo[d]imidazol-6-yl)(phenyl)methanone (PTH-BP), specifically designed to enhance ClO⁻ detection efficiency. PTH-BP exhibits strong aggregation-induced emission (AIE), emitting deep orange fluorescence at 620 nm with a large Stokes shift of 195 nm, and achieves an impressive detection limit of 1 nM in ACN/PBS buffer solutions.

View Article and Find Full Text PDF

Nanoscale Titanium Oxide Memristive Structures for Neuromorphic Applications: Atomic Force Anodization Techniques, Modeling, Chemical Composition, and Resistive Switching Properties.

Nanomaterials (Basel)

January 2025

Research Laboratory Neuroelectronics and Memristive Nanomaterials (NEUROMENA Lab), Institute of Nanotechnologies, Electronics and Electronic Equipment Engineering, Southern Federal University, Taganrog 347922, Russia.

This paper presents the results of a study on the formation of nanostructures of electrochemical titanium oxide for neuromorphic applications. Three anodization synthesis techniques were considered to allow the formation of structures with different sizes and productivity: nanodot, lateral, and imprint. The mathematical model allowed us to calculate the processes of oxygen ion transfer to the reaction zone; the growth of the nanostructure due to the oxidation of the titanium film; and the formation of TiO, TiO, and TiO oxides in the volume of the growing nanostructure and the redistribution of oxygen vacancies and conduction channel.

View Article and Find Full Text PDF

As an emerging two-dimensional (2D) Group-VA material, bismuth selenide (BiSe) exhibits favorable electrical and optical properties. Here, three distinct morphologies of BiSe were obtained from bulk BiSe through electrochemical intercalation exfoliation. And the morphologies of these nanostructures can be tuned by adjusting solvent polarity during exfoliation.

View Article and Find Full Text PDF

Spray-Flame Synthesis (SFS) and Characterization of LiAlYTi(PO) [LA(Y)TP] Solid Electrolytes.

Nanomaterials (Basel)

December 2024

Institute for Energy and Materials Processes-Reactive Fluids, University of Duisburg-Essen, 47057 Duisburg, Germany.

Solid-state electrolytes for lithium-ion batteries, which enable a significant increase in storage capacity, are at the forefront of alternative energy storage systems due to their attractive properties such as wide electrochemical stability window, relatively superior contact stability against Li metal, inherently dendrite inhibition, and a wide range of temperature functionality. NASICON-type solid electrolytes are an exciting candidate within ceramic electrolytes due to their high ionic conductivity and low moisture sensitivity, making them a prime candidate for pure oxidic and hybrid ceramic-in-polymer composite electrolytes. Here, we report on producing pure and Y-doped Lithium Aluminum Titanium Phosphate (LATP) nanoparticles by spray-flame synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!