A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multilocus functional characterization of indigenous and exotic inbreds for dgat1-2, fatb, ge2 and wri1a genes affecting kernel oil and fatty acid profile in maize. | LitMetric

AI Article Synopsis

  • The demand for maize oil is rising due to its industrial uses and importance in nutrition and animal feed, making oil content and composition key factors in the market.
  • A study examined 292 diverse maize inbred lines to analyze genes associated with kernel oil, finding varying frequencies of mutant and wild-type alleles in critical genes.
  • The research highlights the potential of certain maize genotypes that carry favorable alleles for breeding programs aimed at developing high-oil maize, marking a significant advancement in genetic understanding.

Article Abstract

Demand for maize oil is progressively increasing due to its diverse industrial applications, aside from its primary role in human nutrition and animal feed. Oil content and composition are two crucial determinants of maize oil in the international market. As kernel oil in maize is a complex quantitative trait, improving this trait presents a challenge for plant breeders and biotechnologists. Here, we characterized a set of 292 diverse maize inbreds of both indigenous and exotic origin by exploiting functional polymorphism of the dgat1-2, fatb, ge2, and wri1a genes governing kernel oil in maize. Genotyping using gene-based functional markers revealed a lower frequencies of dgat1-2 (0.15) and fatb (0.12) mutant alleles and a higher frequencies of wild-type alleles (Dgat1-2: 0.85; fatB: 0.88). The favorable wri1a allele was conserved across genotypes, while its wild-type allele (WRI1a) was not detected. In contrast, none of the genotypes possessed the ge2 favorable allele. The frequency of favorable alleles of both dgat1-2 and fatb decreased to 0.03 when considered together. Furthermore, pairwise protein-protein interactions among target gene products were conducted to understand the effect of one protein on another and their responses to kernel oil through functional enrichments. Thus, the identified maize genotypes with dgat1-2, fatb, and wri1a favourable alleles, along with insights gained through the protein-protein association network, serve as prominent and unique genetic resources for high-oil maize breeding programs. This is the first comprehensive report on the functional characterization of diverse genotypes at the molecular and protein levels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2023.148001DOI Listing

Publication Analysis

Top Keywords

dgat1-2 fatb
16
kernel oil
16
functional characterization
8
indigenous exotic
8
fatb ge2
8
ge2 wri1a
8
wri1a genes
8
maize
8
maize oil
8
oil maize
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!