Purpose: To evaluate the effect of firing temperature and heating rate on the volumetric shrinkage, translucency, flexural strength, hardness, and fracture toughness of a zirconia veneering ceramic.

Material And Methods: Zirconia veneering ceramic specimens (N = 45) with varying final temperatures (730 °C, 750 °C, and 770 °C) and heating rates (70 °C/min, 55 °C/min, and 40 °C/min) were fabricated (n = 5). Each specimen's shrinkage, translucency, flexural strength, hardness, and fracture toughness were determined. Two-way analysis of variance, Scheffé test, and Pearson's correlation analysis were used to evaluate data (α = 0.05).

Results: The shrinkage (44.9 ± 3.1-47.5 ± 1.6 vol%) and flexural strength (74.1 ± 17.4-107.0 ± 27.1 MPa) were not affected by tested parameters (P ≥ 0.288). The interaction between the main factors affected the translucency, hardness, and fracture toughness of the specimens (P ≤ 0.007). Specimens with 770 °C final temperature and 70 °C/min heating rate had the lowest (21.8 ± 3.2 %) translucency (P ≤ 0.039). The hardness ranged between 4.98 ± 0.51 GPa (730 °C; 70 °C/min) and 5.60 ± 0.37 GPa (770 °C; 70 °C/min). Fracture toughness ranged between 0.54 ± 0.04 MPa√m and 0.67 ± 0.08 MPa√m with the highest values for specimens fired at 730 °C with 70 °C/min (P ≤ 0.001). There was a positive correlation between translucency and hardness (r = 0.335, P = 0.012), and a negative correlation between fracture toughness and all parameters other than shrinkage (translucency: r = -0.693/P < 0.001, flexural strength: r = -0.258/P = 0.046, hardness: r = -0.457/P < 0.001).

Conclusions: Heating rate and final temperature should be considered while fabricating veneered zirconia restorations with tested ceramic as they affected the translucency, hardness, and fracture toughness.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2023.106235DOI Listing

Publication Analysis

Top Keywords

fracture toughness
20
heating rate
12
zirconia veneering
12
shrinkage translucency
12
flexural strength
12
hardness fracture
12
final temperature
8
temperature heating
8
veneering ceramic
8
translucency flexural
8

Similar Publications

Preparation and Application of Nature-inspired High-performance Mechanical Materials.

Acta Biomater

January 2025

The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China.

Natural materials are valued for their lightweight properties, high strength, impact resistance, and fracture toughness, often outperforming human-made materials. This paper reviews recent research on biomimetic composites, focusing on how composition, microstructure, and interfacial characteristics affect mechanical properties like strength, stiffness, and toughness. It explores biological structures such as mollusk shells, bones, and insect exoskeletons that inspire lightweight designs, including honeycomb structures for weight reduction and impact resistance.

View Article and Find Full Text PDF

Fracture toughness is an important index related to the service safety of marine risers, and weld is an essential component of the steel catenary risers. In this paper, microscopic structure characterization methods such as scanning electron microscopy (SEM) and electron back scatter diffraction (EBSD), as well as mechanical experiments like crack tip opening displacement (CTOD) and nanoindentation, were employed to conduct a detailed study on the influence of the microstructure characteristics of multi-wire submerged arc welded seams of steel catenary riser pipes on CTOD fracture toughness. The influence mechanisms of each microstructure characteristic on fracture toughness were clarified.

View Article and Find Full Text PDF

Defects can be introduced into shotcrete materials after a few freeze-thaw cycles, which has a significant influence on the fracture performance of shotcrete. In this study, a series of shotcrete specimens with varying sizes, geometries, and initial crack lengths were prepared to investigate the fracture properties of notched shotcrete under freeze-thaw conditions. Considering the effects of specimen boundaries and material microstructure, a linear closed-form solution was proposed to determine the fracture toughness of frost-damaged shotcrete.

View Article and Find Full Text PDF

Intrinsic Anti-Freezing, Tough, and Transparent Hydrogels for Smart Optical and Multi-Modal Sensing Applications.

Adv Mater

January 2025

Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.

Hydrogels have received great attention due to their molecular designability and wide application range. However, they are prone to freeze at low temperatures due to the existence of mass water molecules, which can damage their flexibility and transparency, greatly limiting their use in cold environments. Although adding cryoprotectants can reduce the freezing point of hydrogels, it may also deteriorate the mechanical properties and face the risk of cryoprotectant leakage.

View Article and Find Full Text PDF

Background: Long-term durability of a restoration relies on the marginal integrity and its ability to withstand the occlusal forces. Fiber-reinforced composites (FRCs) exhibited superior properties in terms of fracture toughness, flexural strength, and wear resistance.

Aim: The aim of this study was to assess and compare marginal adaptation and microtensile bond strength (µTBS) of posterior FRCs comparing with a condensable composite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!