A major obstacle for chemotherapeutics in Glioblastoma (GB) is to reach the tumour cells due to the presence of the blood-brain barrier (BBB) and chemoresistance of anticancer drugs. The present study reports two polyunsaturated fatty acids, gamma-linolenic acid (GLA) and alpha-linolenic acid (ALA) appended nanostructured lipid carriers (NLCs) of a CNS negative chemotherapeutic drug docetaxel (DTX) for targeted delivery to GB. The ligand appended DTX-NLCs demonstrated particle size < 160 nm, PDI < 0.29 and a negative surface charge. The successful linkage of GLA (41 %) and ALA (30 %) ligand conjugation to DTX- NLCs was confirmed by diminished surface amino groups on the NLCs, lower surface charge and FTIR profiling. Fluorophore labelled GLA-DTX-NLCs and ALA-DTX-NLCs permeated the in-vitro 3D BBB model with Papp values of 1.8 × 10 and 1.9 × 10 cm/s respectively. Following permeation, both formulations showed enhanced uptake by GB immortalised cells while ALA-DTX-NLCs showed higher uptake in patient-derived GB cells as evidenced in an in-vitro 3D blood brain tumour barrier (BBTB) model. Both surface functionalised formulations showed higher internalisation in GB cells as compared to bare DTX-NLCs. ALA-DTX-NLCs and GLA-DTX-NLCs showed 13.9-fold and 6.8-fold higher DTX activity respectively at 24 h as indicated by IC values when tested in patient-derived GB cells. ALA-DTX-NLCs displayed better efficacy than GLA-DTX-NLCs when tested against 3D tumour spheroids and patient-derived cells. These novel formulations will contribute widely to overcoming biological barriers for treating glioblastoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioadv.2023.213660 | DOI Listing |
Leukemia
January 2025
Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany.
Refractory disease and relapse are major challenges in acute myeloid leukemia (AML) therapy attributed to survival of leukemic stem cells (LSC). To target LSCs, antibody-drug conjugates (ADCs) provide an elegant solution, combining the specificity of antibodies with highly potent payloads. We aimed to investigate if FLT3-20D9h3-ADCs delivering either the DNA-alkylator duocarmycin (DUBA) or the microtubule-toxin monomethyl auristatin F (MMAF) can eradicate quiescent LSCs.
View Article and Find Full Text PDFJ Pathol Clin Res
January 2025
State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, PR China.
CXC chemokine receptor 4 (CXCR4) and programmed cell death-ligand 1 (PD-L1) are two critical molecules involved in the tumor immune microenvironment. However, the impact of platinum drugs, such as cisplatin, on CXCR4 or PD-L1 expression and the underlying mechanisms in gastric cancer (GC) remain unknown. Moreover, the correlation between their expression levels in GC remains elusive.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Center for Mathematical Modeling and Data Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan. Electronic address:
Drug resistance often stems from drug-tolerant persister (DTP) cells in cancer. These cells arise from various lineages and exhibit complex dynamics. However, effectively targeting DTP cells remains challenging.
View Article and Find Full Text PDFClin Cancer Res
January 2025
Mater Research Institute - University of Queensland, Woolloongabba, Qld, Australia.
Purpose: Receptor CUB-domain containing- protein 1 (CDCP1) was evaluated as a target for detection and treatment of breast cancer.
Experimental Design: CDCP1 expression was assessed immunohistochemically in tumors from 423 patients (119 triple-negative breast cancer (TNBC); 75 HER2+; 229 ER+/HER2- including 228 primary tumors, 229 lymph node and 47 distant metastases). Cell cytotoxicity induced in vitro by a CDCP1-targeting antibody-drug conjugate (ADC), consisting of the human/mouse chimeric antibody ch10D7 and the microtubule disruptor monomethyl auristatin E (MMAE), was quantified, including in combination with HER2-targeting ADC T-DM1.
Background And Aims: Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) is reversible at early stages, making early identification of high-risk individuals clinically valuable. Previously, we demonstrated that patient-derived induced pluripotent stem cells (iPSCs) harboring MASLD DNA risk variants exhibit greater oleate-induced intracellular lipid accumulation than those without these variants. This study aimed to develop an iPSC-based MASLD risk predictor using functional lipid accumulation assessments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!