With the wide application of deep learning in Drug Discovery, deep generative model has shown its advantages in drug molecular generation. Generative adversarial networks can be used to learn the internal structure of molecules, but the training process may be unstable, such as gradient disappearance and model collapse, which may lead to the generation of molecules that do not conform to chemical rules or a single style. In this paper, a novel method called STAGAN was proposed to solve the difficulty of model training, by adding a new gradient penalty term in the discriminator and designing a parallel layer of batch normalization used in generator. As an illustration of method, STAGAN generated higher valid and unique molecules than previous models in training datasets from QM9 and ZINC-250K. This indicates that the proposed method can effectively solve the instability problem in the model training process, and can provide more instructive guidance for the further study of molecular graph generation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2023.107691 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!