The corpus luteum is primarily responsible for the production and secretion of progesterone. Melatonin has been established to regulate autophagy and induce progesterone secretion in luteal cell. However, whether melatonin affects progesterone secretion by interfering with autophagy is yet to be reported. In the present study, the expression levels of melatonin receptors (MT1 and MT2), autophagy-related protein Beclin1 (Bec1), microtubule-associated protein light chain 3 B (LC3B), progesterone and steroidogenic acute regulatory protein (StAR), and cytochrome P450scc (CYP11A1) were analyzed in the corpus luteum of sheep at different stages (early, middle, and late); specifically, enzyme-linked immunosorbent assays, immunohistochemical staining, and western blotting were utilized for this expression analysis. In addition, to determine whether melatonin regulated progesterone secretion via the regulation of autophagy, luteal cells were cultured before being exposed to different concentrations of melatonin (0.01-100 nM) and the autophagy inhibitor chloroquine (50 μM). Next, luteal cells were treated with the melatonin receptor inhibitors 4-phenyl-2-propionamidotetralin (1 μM) and luzindole (1 μM) before detecting Bec1, LC3B2, AMPK/mTOR, and progesterone secretion levels to ascertain whether the effect of melatonin on autophagy and progesterone secretion is mediated by its corresponding receptors in luteal cells. Finally, to determine the significance of the AMPK/mTOR pathway in this process, an AMPK inhibitor, Compound C (10 μM), was added to luteal cells. Overall, the highest expression of melatonin receptors, autophagy and progesterone secretion was observed in the middle-phase corpus luteum; additionally, melatonin promoted autophagy, at least partially, through its receptor-mediated AMPK/mTOR pathway, which thereby promoting progesterone secretion in luteal cells in vitro. Ultimately, this study is the first to clarify the important role of autophagy in the melatonin-mediated regulation of progesterone secretion in the corpus luteum of sheep; it also lays a foundation for further exploration into the role of melatonin in regulating sheep's ovarian function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2023.11.010 | DOI Listing |
Front Immunol
January 2025
Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States.
The placenta is a unique organ with various immunological and endocrinological roles that modulate maternal and fetal physiology to promote maternal-fetal tolerance, pregnancy maintenance, and parturition at term. During pregnancy, the hormone prolactin (PRL) is constitutively secreted by the placenta and is necessary for implantation, progesterone support, fetal development, and overall immune modulation. While PRL is essential for pregnancy, studies suggest that elevated levels of serum PRL (hyperprolactinemia) are associated with adverse pregnancy outcomes, including miscarriage, preterm birth, and preeclampsia.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medicine Solna, Division of Infectious Diseases, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Bioclinicum J7:20, 171 76, Solna, Sweden.
The injectable contraceptive, depot medroxyprogesterone acetate (DMPA), is associated with compromised cervical mucosal barriers. High-resolution spatial transcriptomics is applied here to reveal the spatial localization of these altered molecular markers. Ectocervical tissue samples from Kenyan sex workers using DMPA, or non-hormonal contraceptives, underwent spatial transcriptomics and gene set enrichment analyses.
View Article and Find Full Text PDFACS Sens
January 2025
School of Materials Science and Engineering, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
Steroid hormones, especially progesterone (P), estradiol (E), and testosterone (T), are key bioactive regulators in various female physiological processes, including growth and development, ovulation, and the reproductive cycle, as well as metabolism and mental health. As lipophilic molecules produced in sex glands, these steroid female hormones can be transported through blood vessels into various body fluids such as saliva, sweat, and urine. However, the ultralow concentration of steroid hormones down to picomolar (pM) level necessitates great demands for ultrasensitive but low-cost analytic tools to implement accurate, point-of-care or even continuous monitoring in a user-friendly fashion.
View Article and Find Full Text PDFJ Obstet Gynaecol Res
January 2025
Department of Obstetrics and Gynecology, Health Sciences University, Tepecik Education and Research Hospital, Izmir, Turkey.
Aim: This study aims to assess the impacts of various trigger day progesterone (P) and luteinizing hormone (LH) levels on live birth rates (LBRs) in fresh in vitro fertilization (IVF) cycles, considering their elevation from stimulation and premature luteinization.
Methods: This retrospective cohort study included the first ovarian stimulation cycles with GnRH antagonist protocol of 1253 patients who underwent intracytoplasmic sperm injection and fresh embryo transfer at a tertiary clinic's IVF center between 2010 and 2016. Participants were divided into four groups based on trigger day serum P and LH levels, using the 90th percentile thresholds for P (1.
Elife
January 2025
Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!