Management of agricultural waste is an important part of plantation operations. Not all wastes are suitable for composting or the process is simply inefficient and time-consuming. In their case, thermal treatment is acceptable, but it is necessary to optimize the process to minimize greenhouse gas emissions. This article investigates the feasibility of constructing artificial neural networks (ANNs) to predict feedstock and emission parameters from the combustion of vineyard biomass. In order to maximize accuracy while avoiding overfitting of the ANN, a novel dual-ANN system was proposed. It consisted of two cascade-forward ANNs trained on independent data, each with three hidden layers. A benchmark showed that the final networks had a relative error in the range of 0.81-2.83%, and the resulting dual-ANN up to a maximum of 2.09%. Based on the ANN, it was possible to make recommendations on the parameters of the feedstock that would be suitable for obtaining bioenergy. It was noted that the best calorific values are shown by waste from plants with an intermediate amount, distribution, and mass of leaves, with relatively low average leaf area. Emissivity reduction, however, requires significantly different conditions. Preference is given to waste from plants that have high amounts of leaves but are spread over many stems - that is, plants that are highly shrubby during the growing season. This proves that it is not possible to formulate universal recommendations that are both energy- and carbon-beneficial, but outlines a clear direction where consensus should be sought, depending on the goals adopted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.119543DOI Listing

Publication Analysis

Top Keywords

waste plants
8
advanced dual-artificial
4
dual-artificial neural
4
neural network
4
network system
4
system biomass
4
biomass combustion
4
combustion analysis
4
analysis emission
4
emission minimization
4

Similar Publications

This article aims to provide a systematic review of the literature on animal biomass and biogas plants through an analysis of externalities and benefits in economic, social, and environmental terms. In recent years, the spread of biogas plants has played an important role, especially in rural areas, generating benefits not only for the individual farm but for entire communities, contributing to the reduction of energy poverty and, at the same time, promoting the production of energy and organic manure. In light of the findings, the study argues that: (a) more public subsidies are needed; (b) the deployment of an appropriate policy mix would encourage the spread of small and medium-sized plants, with a reduction in road transport; and (c) targeted and diversified investments are needed on a geographic-by-geographic basis.

View Article and Find Full Text PDF

Contamination by heavy metals (HMs) in aquatic ecosystems is a worldwide issue. Therefore, a feasible solution is crucial for underdeveloped and developing countries. Waste-derived materials (WDMs) exhibit unique physical and chemical properties that promote diverse mechanisms for the removal of HMs in constructed wetlands (CWs).

View Article and Find Full Text PDF

Nuclear power plant waste heat opens a window of next-generation desalination hybridization: a SOAR-based review.

Water Sci Technol

January 2025

Department of Production Engineering and Mechanical Design, Faculty of Engineering, Tanta University 31527, Egypt; Faculty of Engineering, Pharos University in Alexandria 21648, Alexandria, Egypt.

This review examines the potential for utilizing nuclear power plant (NPP) waste heat in hybrid desalination systems, focusing on Reverse Osmosis-Low-Temperature Evaporation (RO-LTE) driven by renewable energy sources and atomic waste heat. By employing a SOAR (Strengths, Opportunities, Aspirations, Results) analysis, the study evaluates the integration of NPP waste heat into various desalination technologies, emphasizing the environmental benefits and energy efficiency improvements. Fundamental aspirations include advancements in material science and heat exchanger designs, which enhance heat transfer and evaporation processes.

View Article and Find Full Text PDF

Nowadays, Egypt is treating the Nile River Water to produce drinking water, and this process generates large amounts of waste, around 635 million m annually, which is called water treatment plant sludge (WTPS). This WTPS cost the government around 30 million US dollars to return it back to the Nile River in addition to negatively affecting the environment. Therefore, there is an urgent need to find environmentally friendly alternatives that reduce the impact of such an issue.

View Article and Find Full Text PDF

Riccia sorocarpa Bisch., commonly known as common crystalwort, is a plant belonging to the Marchantiales order with a cosmopolitan distribution among a wide range of habitats: fields, gardens, waste ground, on paths, cliff tops, and thin soil over rocks or by water bodies. However, research into the genetic aspects of this species is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!