Two-dimensional materials are widely used in membrane separation, but the loose distribution and severe expansion between graphene oxide (GO) nanosheets limit its application. Here, we introduce a two-dimensional MOF material into the GO membrane to enhance its water permeance and separation performance. The MOF/GO composite membrane was prepared by vacuum filtration. The MOF and GO nanosheets were tightly stacked through the π-π effect, and the shortened transmission path and enhanced pore structure greatly improved the water permeance of the composite membrane. The MOF/GO membrane exhibited a high water permeance of 56.94 L m h bar. The rejection rates of methylene blue and was as methyl orange dyes were as high as 99.79% and 99.11%, respectively. At increased dye concentration, the rejection rate of methylene blue was still maintained greater than 99%. Dye rejection after 18 h of continuous operation remains above 90%. This work provides new ideas for improving membrane separation materials. The combination of two-dimensional heterogeneous materials can result in synergistic advantages for the development of composite membranes with high water permeance and high rejection rate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.120693 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!