AI Article Synopsis

  • - Phytic acid modified graphene oxide (PGO) is developed as an effective adsorbent for removing methyl blue (MB) from wastewater, achieving efficient adsorption of 89.08 mg·g in just 22 minutes using a straightforward hydrothermal method.
  • - The adsorption mechanism is analyzed using the hard-soft acid-base (HSAB) principle, which reveals that both covalent bonds and electrostatic interactions are involved in the process, particularly between the phytic acid moiety and MB.
  • - Findings from FTIR and UV-Vis analyses confirm that modifying graphene oxide with phytic acid increases its ability to attract and hold onto contaminants, highlighting PGO's potential for environmental cleanup applications.

Article Abstract

Phytic acid modified graphene oxide (PGO) has encouraging prospect in environmental application. Herein, PGO was fabricated with a simple hydrothermal method and used as adsorbent to remove methyl blue (MB). Elaborate inspection based on the hard-soft acid-base (HSAB) principle, spectroscopic characterization, as well as batch adsorption and fitting were conducted to unravel the adsorption mechanism. Results show, PGO efficiently adsorbs 89.08 mg·g of MB in 22 min. HSAB principle proposes, high electron transfer (ΔN) and energy lowering (ΔE) induce covalent bond (chemical interaction), while low ΔN and ΔE induce electrostatic effect (physical interaction). Accordingly, both the first and second strongest interaction occurs between PA moiety and MB: π electrons of MB flows towards O atom in OH and O(-O-) of PA, respectively. Yet the third strongest interaction happens between GO moiety and MB: electron of O atom in OH group of GO flows towards N atom of MB. Above top three interactions are characterized by prominent ΔN and ΔE implying the formation of covalent bond. However, other interactions yield low ΔN and ΔE, suggesting the presence of electrostatic effect. HSAB principle conclusion was substantiated by FTIR and UV-Vis analyses. These findings confirm that PA modification enhances the adsorption affinity of graphene oxide. Thereby, chemical adsorption induced by physical interaction is proposed. This work may inspire the design of efficient adsorbent based on PGO framework for environmental restoration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2023.123645DOI Listing

Publication Analysis

Top Keywords

graphene oxide
12
hsab principle
12
Δn Δe
12
methyl blue
8
phytic acid
8
acid modified
8
modified graphene
8
adsorption mechanism
8
Δe induce
8
covalent bond
8

Similar Publications

Acoustical properties are essential for understanding the molecular interactions in fluids, as they influence the physicochemical behavior of liquids and determine their suitability for diverse applications. This study investigated the acoustical parameters of silver nanoparticles (Ag NPs), reduced graphene oxide (rGO), and Ag/rGO nanocomposite nanofluids at varying concentrations. Ag NPs and Ag/rGO nanocomposites were synthesized via a Bos taurus indicus (BTI) metabolic waste-assisted method and characterized using advanced techniques, including XRD, TEM, Raman, DLS, zeta potential, and XPS.

View Article and Find Full Text PDF

The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.

View Article and Find Full Text PDF

An ultrasensitive ECL immunosensor with a dual signal amplification strategy using AuNPs@GO@SmMoSe and Gd(MoO) for estriol detection.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:

Background: Estriol (E3) is a common estrogen responsible for regulating the female reproductive system, but excessive amount can pose health risks to humans and wild life. Therefore, sensitive and accurate detection of estriol level is crucial. A novel competitive ECL immunosensor based on a dual signal amplification strategy of AuNPs@GO@SmMoSe and Gd(MoO) was fabricated for ultrasensitive detection of estriol.

View Article and Find Full Text PDF

An electrochemical aptasensor based on bimetallic carbon nanocomposites AuPt@rGO for ultrasensitive detection of adenosine on portable potentiostat.

Bioelectrochemistry

January 2025

Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, People's Republic of China. Electronic address:

Adenosine plays a crucial role in the cardiovascular and nervous systems of living organisms. Excessive adenosine can lead to arrhythmias or heart failure, making the accurate detection of adenosine highly valuable. Given the widespread use of sensors for detecting small molecules, we propose a sensitive electrochemical aptasensor for adenosine detection in this study.

View Article and Find Full Text PDF

Enhancing early breast cancer detection with APE1-triggered oligonucleotide probes and graphene oxide: The impact of variable AP site modification on sensitivity and specificity.

Talanta

January 2025

Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China. Electronic address:

There is a critical need for inclusive diagnostic platforms to enhance the accuracy of early breast cancer detection. Dysregulated microRNA-1246 (miR-1246), closely linked to the disease progression and recurrence, has emerged as a promising diagnostic and prognostic biomarker for BC. However, achieving simple, rapid, and ultrasensitive quantification of serum miRNAs remains significant challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!